olm/src/crypto.cpp
Richard van der Hoff 25953b350b Use header files where possible
This fixes an incorrect re-declaration of ed25519_sign.

Implement header files for some of the other library bits so that we don't need
to declare functions in crypto.cpp.
2015-12-03 17:08:04 +00:00

329 lines
9.9 KiB
C++

/* Copyright 2015 OpenMarket Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "olm/crypto.hh"
#include "olm/memory.hh"
#include <cstring>
extern "C" {
#include "crypto-algorithms/aes.h"
#include "crypto-algorithms/sha256.h"
}
#include "ed25519/src/ed25519.h"
#include "ed25519_additions.h"
#include "curve25519-donna.h"
namespace {
static const std::uint8_t CURVE25519_BASEPOINT[32] = {9};
static const std::size_t AES_KEY_SCHEDULE_LENGTH = 60;
static const std::size_t AES_KEY_BITS = 8 * olm::KEY_LENGTH;
static const std::size_t AES_BLOCK_LENGTH = 16;
static const std::size_t SHA256_BLOCK_LENGTH = 64;
static const std::uint8_t HKDF_DEFAULT_SALT[32] = {};
template<std::size_t block_size>
inline static void xor_block(
std::uint8_t * block,
std::uint8_t const * input
) {
for (std::size_t i = 0; i < block_size; ++i) {
block[i] ^= input[i];
}
}
inline static void hmac_sha256_key(
std::uint8_t const * input_key, std::size_t input_key_length,
std::uint8_t * hmac_key
) {
std::memset(hmac_key, 0, SHA256_BLOCK_LENGTH);
if (input_key_length > SHA256_BLOCK_LENGTH) {
::SHA256_CTX context;
::sha256_init(&context);
::sha256_update(&context, input_key, input_key_length);
::sha256_final(&context, hmac_key);
} else {
std::memcpy(hmac_key, input_key, input_key_length);
}
}
inline static void hmac_sha256_init(
::SHA256_CTX * context,
std::uint8_t const * hmac_key
) {
std::uint8_t i_pad[SHA256_BLOCK_LENGTH];
std::memcpy(i_pad, hmac_key, SHA256_BLOCK_LENGTH);
for (std::size_t i = 0; i < SHA256_BLOCK_LENGTH; ++i) {
i_pad[i] ^= 0x36;
}
::sha256_init(context);
::sha256_update(context, i_pad, SHA256_BLOCK_LENGTH);
olm::unset(i_pad);
}
inline static void hmac_sha256_final(
::SHA256_CTX * context,
std::uint8_t const * hmac_key,
std::uint8_t * output
) {
std::uint8_t o_pad[SHA256_BLOCK_LENGTH + olm::SHA256_OUTPUT_LENGTH];
std::memcpy(o_pad, hmac_key, SHA256_BLOCK_LENGTH);
for (std::size_t i = 0; i < SHA256_BLOCK_LENGTH; ++i) {
o_pad[i] ^= 0x5C;
}
::sha256_final(context, o_pad + SHA256_BLOCK_LENGTH);
::SHA256_CTX final_context;
::sha256_init(&final_context);
::sha256_update(&final_context, o_pad, sizeof(o_pad));
::sha256_final(&final_context, output);
olm::unset(final_context);
olm::unset(o_pad);
}
} // namespace
void olm::curve25519_generate_key(
std::uint8_t const * random_32_bytes,
olm::Curve25519KeyPair & key_pair
) {
std::memcpy(key_pair.private_key, random_32_bytes, KEY_LENGTH);
::curve25519_donna(
key_pair.public_key, key_pair.private_key, CURVE25519_BASEPOINT
);
}
void olm::curve25519_shared_secret(
olm::Curve25519KeyPair const & our_key,
olm::Curve25519PublicKey const & their_key,
std::uint8_t * output
) {
::curve25519_donna(output, our_key.private_key, their_key.public_key);
}
void olm::curve25519_sign(
olm::Curve25519KeyPair const & our_key,
std::uint8_t const * message, std::size_t message_length,
std::uint8_t * output
) {
std::uint8_t private_key[KEY_LENGTH];
std::uint8_t public_key[KEY_LENGTH];
std::memcpy(private_key, our_key.private_key, KEY_LENGTH);
::ed25519_keypair(private_key, public_key);
::ed25519_sign(
output,
message, message_length,
public_key, private_key
);
::convert_ed25519_to_curve25519(public_key, output);
}
bool olm::curve25519_verify(
olm::Curve25519PublicKey const & their_key,
std::uint8_t const * message, std::size_t message_length,
std::uint8_t const * signature
) {
std::uint8_t public_key[KEY_LENGTH];
std::uint8_t signature_buffer[SIGNATURE_LENGTH];
std::memcpy(public_key, their_key.public_key, KEY_LENGTH);
std::memcpy(signature_buffer, signature, SIGNATURE_LENGTH);
::convert_curve25519_to_ed25519(public_key, signature_buffer);
return 0 != ::ed25519_verify(
signature,
message, message_length,
public_key
);
}
void olm::ed25519_generate_key(
std::uint8_t const * random_32_bytes,
olm::Ed25519KeyPair & key_pair
) {
std::memcpy(key_pair.private_key, random_32_bytes, KEY_LENGTH);
::ed25519_keypair(key_pair.private_key, key_pair.public_key);
}
void olm::ed25519_sign(
olm::Ed25519KeyPair const & our_key,
std::uint8_t const * message, std::size_t message_length,
std::uint8_t * output
) {
::ed25519_sign(
output,
message, message_length,
our_key.public_key, our_key.private_key
);
}
bool olm::ed25519_verify(
olm::Ed25519PublicKey const & their_key,
std::uint8_t const * message, std::size_t message_length,
std::uint8_t const * signature
) {
return 0 != ::ed25519_verify(
signature,
message, message_length,
their_key.public_key
);
}
std::size_t olm::aes_encrypt_cbc_length(
std::size_t input_length
) {
return input_length + AES_BLOCK_LENGTH - input_length % AES_BLOCK_LENGTH;
}
void olm::aes_encrypt_cbc(
olm::Aes256Key const & key,
olm::Aes256Iv const & iv,
std::uint8_t const * input, std::size_t input_length,
std::uint8_t * output
) {
std::uint32_t key_schedule[AES_KEY_SCHEDULE_LENGTH];
::aes_key_setup(key.key, key_schedule, AES_KEY_BITS);
std::uint8_t input_block[AES_BLOCK_LENGTH];
std::memcpy(input_block, iv.iv, AES_BLOCK_LENGTH);
while (input_length >= AES_BLOCK_LENGTH) {
xor_block<AES_BLOCK_LENGTH>(input_block, input);
::aes_encrypt(input_block, output, key_schedule, AES_KEY_BITS);
std::memcpy(input_block, output, AES_BLOCK_LENGTH);
input += AES_BLOCK_LENGTH;
output += AES_BLOCK_LENGTH;
input_length -= AES_BLOCK_LENGTH;
}
std::size_t i = 0;
for (; i < input_length; ++i) {
input_block[i] ^= input[i];
}
for (; i < AES_BLOCK_LENGTH; ++i) {
input_block[i] ^= AES_BLOCK_LENGTH - input_length;
}
::aes_encrypt(input_block, output, key_schedule, AES_KEY_BITS);
olm::unset(key_schedule);
olm::unset(input_block);
}
std::size_t olm::aes_decrypt_cbc(
olm::Aes256Key const & key,
olm::Aes256Iv const & iv,
std::uint8_t const * input, std::size_t input_length,
std::uint8_t * output
) {
std::uint32_t key_schedule[AES_KEY_SCHEDULE_LENGTH];
::aes_key_setup(key.key, key_schedule, AES_KEY_BITS);
std::uint8_t block1[AES_BLOCK_LENGTH];
std::uint8_t block2[AES_BLOCK_LENGTH];
std::memcpy(block1, iv.iv, AES_BLOCK_LENGTH);
for (std::size_t i = 0; i < input_length; i += AES_BLOCK_LENGTH) {
std::memcpy(block2, &input[i], AES_BLOCK_LENGTH);
::aes_decrypt(&input[i], &output[i], key_schedule, AES_KEY_BITS);
xor_block<AES_BLOCK_LENGTH>(&output[i], block1);
std::memcpy(block1, block2, AES_BLOCK_LENGTH);
}
olm::unset(key_schedule);
olm::unset(block1);
olm::unset(block2);
std::size_t padding = output[input_length - 1];
return (padding > input_length) ? std::size_t(-1) : (input_length - padding);
}
void olm::sha256(
std::uint8_t const * input, std::size_t input_length,
std::uint8_t * output
) {
::SHA256_CTX context;
::sha256_init(&context);
::sha256_update(&context, input, input_length);
::sha256_final(&context, output);
olm::unset(context);
}
void olm::hmac_sha256(
std::uint8_t const * key, std::size_t key_length,
std::uint8_t const * input, std::size_t input_length,
std::uint8_t * output
) {
std::uint8_t hmac_key[SHA256_BLOCK_LENGTH];
::SHA256_CTX context;
hmac_sha256_key(key, key_length, hmac_key);
hmac_sha256_init(&context, hmac_key);
::sha256_update(&context, input, input_length);
hmac_sha256_final(&context, hmac_key, output);
olm::unset(hmac_key);
olm::unset(context);
}
void olm::hkdf_sha256(
std::uint8_t const * input, std::size_t input_length,
std::uint8_t const * salt, std::size_t salt_length,
std::uint8_t const * info, std::size_t info_length,
std::uint8_t * output, std::size_t output_length
) {
::SHA256_CTX context;
std::uint8_t hmac_key[SHA256_BLOCK_LENGTH];
std::uint8_t step_result[olm::SHA256_OUTPUT_LENGTH];
std::size_t bytes_remaining = output_length;
std::uint8_t iteration = 1;
if (!salt) {
salt = HKDF_DEFAULT_SALT;
salt_length = sizeof(HKDF_DEFAULT_SALT);
}
/* Expand */
hmac_sha256_key(salt, salt_length, hmac_key);
hmac_sha256_init(&context, hmac_key);
::sha256_update(&context, input, input_length);
hmac_sha256_final(&context, hmac_key, step_result);
hmac_sha256_key(step_result, olm::SHA256_OUTPUT_LENGTH, hmac_key);
/* Extract */
hmac_sha256_init(&context, hmac_key);
::sha256_update(&context, info, info_length);
::sha256_update(&context, &iteration, 1);
hmac_sha256_final(&context, hmac_key, step_result);
while (bytes_remaining > olm::SHA256_OUTPUT_LENGTH) {
std::memcpy(output, step_result, olm::SHA256_OUTPUT_LENGTH);
output += olm::SHA256_OUTPUT_LENGTH;
bytes_remaining -= olm::SHA256_OUTPUT_LENGTH;
iteration ++;
hmac_sha256_init(&context, hmac_key);
::sha256_update(&context, step_result, olm::SHA256_OUTPUT_LENGTH);
::sha256_update(&context, info, info_length);
::sha256_update(&context, &iteration, 1);
hmac_sha256_final(&context, hmac_key, step_result);
}
std::memcpy(output, step_result, bytes_remaining);
olm::unset(context);
olm::unset(hmac_key);
olm::unset(step_result);
}