megolm.rst: review feedback
Split ratchet algorithm out to a separate section. Also clean up some phrasing and correct a typo or two.
This commit is contained in:
parent
182eccc624
commit
fc6688c4c8
1 changed files with 79 additions and 61 deletions
140
docs/megolm.rst
140
docs/megolm.rst
|
@ -3,6 +3,8 @@ Megolm group ratchet
|
||||||
|
|
||||||
An AES-based cryptographic ratchet intended for group communications.
|
An AES-based cryptographic ratchet intended for group communications.
|
||||||
|
|
||||||
|
.. contents::
|
||||||
|
|
||||||
Background
|
Background
|
||||||
----------
|
----------
|
||||||
|
|
||||||
|
@ -18,13 +20,12 @@ Overview
|
||||||
--------
|
--------
|
||||||
|
|
||||||
Each participant in a conversation uses their own session, which consists of a
|
Each participant in a conversation uses their own session, which consists of a
|
||||||
ratchet, and an `Ed25519`_ keypair.
|
ratchet and an `Ed25519`_ keypair.
|
||||||
|
|
||||||
Secrecy is provided by the ratchet, which can be wound forwards, via hash
|
Secrecy is provided by the ratchet, which can be wound forwards but not
|
||||||
functions, but not backwards, and is used to derive a distinct message key
|
backwards, and is used to derive a distinct message key for each message.
|
||||||
for each message.
|
|
||||||
|
|
||||||
Authenticity is provided via the Ed25519 key.
|
Authenticity is provided via Ed25519 signatures.
|
||||||
|
|
||||||
The value of the ratchet, and the public part of the Ed25519 key, are shared
|
The value of the ratchet, and the public part of the Ed25519 key, are shared
|
||||||
with other participants in the conversation via secure peer-to-peer
|
with other participants in the conversation via secure peer-to-peer
|
||||||
|
@ -32,10 +33,68 @@ channels. Provided that peer-to-peer channel provides authenticity of the
|
||||||
messages to the participants and deniability of the messages to third parties,
|
messages to the participants and deniability of the messages to third parties,
|
||||||
the Megolm session will inherit those properties.
|
the Megolm session will inherit those properties.
|
||||||
|
|
||||||
The Megolm algorithm
|
The Megolm ratchet algorithm
|
||||||
--------------------
|
----------------------------
|
||||||
|
|
||||||
Initial setup
|
The Megolm ratchet :math:`R_i` consists of four parts, :math:`R_{i,j}` for
|
||||||
|
:math:`j \in {0,1,2,3}`. The length of each part depends on the hash function
|
||||||
|
in use (256 bits for this version of Megolm).
|
||||||
|
|
||||||
|
The ratchet is initialised with cryptographically-secure random data, and
|
||||||
|
advanced as follows:
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
\begin{align}
|
||||||
|
R_{i,0} &=
|
||||||
|
\begin{cases}
|
||||||
|
H_0\left(R_{2^24(n-1),0}\right) &\text{if }\exists n | i = 2^24n\\
|
||||||
|
R_{i-1,0} &\text{otherwise}
|
||||||
|
\end{cases}\\
|
||||||
|
R_{i,1} &=
|
||||||
|
\begin{cases}
|
||||||
|
H_1\left(R_{2^24(n-1),0}\right) &\text{if }\exists n | i = 2^24n\\
|
||||||
|
H_1\left(R_{2^16(m-1),1}\right) &\text{if }\exists m | i = 2^16m\\
|
||||||
|
R_{i-1,1} &\text{otherwise}
|
||||||
|
\end{cases}\\
|
||||||
|
R_{i,2} &=
|
||||||
|
\begin{cases}
|
||||||
|
H_2\left(R_{2^24(n-1),0}\right) &\text{if }\exists n | i = 2^24n\\
|
||||||
|
H_2\left(R_{2^16(m-1),1}\right) &\text{if }\exists m | i = 2^16m\\
|
||||||
|
H_2\left(R_{2^8(p-1),2}\right) &\text{if }\exists p | i = 2^8p\\
|
||||||
|
R_{i-1,2} &\text{otherwise}
|
||||||
|
\end{cases}\\
|
||||||
|
R_{i,3} &=
|
||||||
|
\begin{cases}
|
||||||
|
H_3\left(R_{2^24(n-1),0}\right) &\text{if }\exists n | i = 2^24n\\
|
||||||
|
H_3\left(R_{2^16(m-1),1}\right) &\text{if }\exists m | i = 2^16m\\
|
||||||
|
H_3\left(R_{2^8(p-1),2}\right) &\text{if }\exists p | i = 2^8p\\
|
||||||
|
H_3\left(R_{i-1,3}\right) &\text{otherwise}
|
||||||
|
\end{cases}
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
where :math:`H_0`, :math:`H_1`, :math:`H_2`, and :math:`H_3` are different hash
|
||||||
|
functions. In summary: every :math:`2^8` iterations, :math:`R_{i,3}` is
|
||||||
|
reseeded from :math:`R_{i,2}`. Every :math:`2^16` iterations, :math:`R_{i,2}`
|
||||||
|
and :math:`R_{i,3}` are reseeded from :math:`R_{i,1}`. Every :math:`2^24`
|
||||||
|
iterations, :math:`R_{i,1}`, :math:`R_{i,2}` and :math:`R_{i,3}` are reseeded
|
||||||
|
from :math:`R_{i,0}`.
|
||||||
|
|
||||||
|
The complete ratchet value, :math:`R_{i}`, is hashed to generate the keys used
|
||||||
|
to encrypt each mesage. This scheme allows the ratchet to be advanced an
|
||||||
|
arbitrary amount forwards while needing at most 1023 hash computations. A
|
||||||
|
client can decrypt chat history onwards from the earliest value of the ratchet
|
||||||
|
it is aware of, but cannot decrypt history from before that point without
|
||||||
|
reversing the hash function.
|
||||||
|
|
||||||
|
This allows a participant to share its ability to decrypt chat history with
|
||||||
|
another from a point in the conversation onwards by giving a copy of the
|
||||||
|
ratchet at that point in the conversation.
|
||||||
|
|
||||||
|
|
||||||
|
The Megolm protocol
|
||||||
|
-------------------
|
||||||
|
|
||||||
|
Session setup
|
||||||
~~~~~~~~~~~~~
|
~~~~~~~~~~~~~
|
||||||
|
|
||||||
Each participant in a conversation generates their own Megolm session. A
|
Each participant in a conversation generates their own Megolm session. A
|
||||||
|
@ -66,9 +125,9 @@ copy of the counter, ratchet, and public key.
|
||||||
Message encryption
|
Message encryption
|
||||||
~~~~~~~~~~~~~~~~~~
|
~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
Megolm uses AES-256_ in CBC_ mode with `PCKS#7`_ padding for and HMAC-SHA-256_
|
This version of Megolm uses AES-256_ in CBC_ mode with `PCKS#7`_ padding and
|
||||||
(truncated to 64 bits). The 256 bit AES key, 256 bit HMAC key, and 128 bit AES
|
HMAC-SHA-256_ (truncated to 64 bits). The 256 bit AES key, 256 bit HMAC key,
|
||||||
IV are derived from the megolm ratchet :math:`R_i`:
|
and 128 bit AES IV are derived from the megolm ratchet :math:`R_i`:
|
||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
|
@ -104,59 +163,18 @@ Advancing the ratchet
|
||||||
~~~~~~~~~~~~~~~~~~~~~
|
~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
After each message is encrypted, the ratchet is advanced. This is done as
|
After each message is encrypted, the ratchet is advanced. This is done as
|
||||||
follows:
|
described in `The Megolm ratchet algorithm`_, using the following definitions:
|
||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
\begin{align}
|
\begin{align}
|
||||||
R_{i,0} &=
|
H_0(A) &\equiv HMAC(A,\text{"\textbackslash x00"}) \\
|
||||||
\begin{cases}
|
H_1(A) &\equiv HMAC(A,\text{"\textbackslash x01"}) \\
|
||||||
HMAC\left(R_{2^24(n-1),0}, \text{"\textbackslash x00"}\right)
|
H_2(A) &\equiv HMAC(A,\text{"\textbackslash x02"}) \\
|
||||||
&\text{if }\exists n | i = 2^24n\\
|
H_3(A) &\equiv HMAC(A,\text{"\textbackslash x03"}) \\
|
||||||
R_{i-1,0} &\text{otherwise}
|
|
||||||
\end{cases}\\
|
|
||||||
R_{i,1} &=
|
|
||||||
\begin{cases}
|
|
||||||
HMAC\left(R_{2^24(n-1),0}, \text{"\textbackslash x01"}\right)
|
|
||||||
&\text{if }\exists n | i = 2^24n\\
|
|
||||||
HMAC\left(R_{2^16(m-1),1}, \text{"\textbackslash x01"}\right)
|
|
||||||
&\text{if }\exists m | i = 2^16m\\
|
|
||||||
R_{i-1,1} &\text{otherwise}
|
|
||||||
\end{cases}\\
|
|
||||||
R_{i,2} &=
|
|
||||||
\begin{cases}
|
|
||||||
HMAC\left(R_{2^24(n-1),0}, \text{"\textbackslash x02"}\right)
|
|
||||||
&\text{if }\exists n | i = 2^24n\\
|
|
||||||
HMAC\left(R_{2^16(m-1),1}, \text{"\textbackslash x02"}\right)
|
|
||||||
&\text{if }\exists m | i = 2^16m\\
|
|
||||||
HMAC\left(R_{2^8(p-1),2}, \text{"\textbackslash x02"}\right)
|
|
||||||
&\text{if }\exists p | i = 2^8p\\
|
|
||||||
R_{i-1,2} &\text{otherwise}
|
|
||||||
\end{cases}\\
|
|
||||||
R_{i,3} &=
|
|
||||||
\begin{cases}
|
|
||||||
HMAC\left(R_{2^24(n-1),0}, \text{"\textbackslash x03"}\right)
|
|
||||||
&\text{if }\exists n | i = 2^24n\\
|
|
||||||
HMAC\left(R_{2^16(m-1),1}, \text{"\textbackslash x03"}\right)
|
|
||||||
&\text{if }\exists m | i = 2^16m\\
|
|
||||||
HMAC\left(R_{2^8(p-1),2}, \text{"\textbackslash x03"}\right)
|
|
||||||
&\text{if }\exists p | i = 2^8p\\
|
|
||||||
HMAC\left(R_{i-1,3}, \text{"\textbackslash x03"}\right)
|
|
||||||
&\text{otherwise}
|
|
||||||
\end{cases}
|
|
||||||
\end{align}
|
\end{align}
|
||||||
|
|
||||||
where :math:`HMAC(K, T)` is the HMAC-SHA-256_ of ``T``, using ``K`` as the
|
where :math:`HMAC(A, T)` is the HMAC-SHA-256_ of ``T``, using ``A`` as the
|
||||||
key. In summary: every :math:`2^8` iterations, :math:`R_{i,3}` is reseeded from
|
key.
|
||||||
:math:`R_{i,2}`. Every :math:`2^16` iterations, :math:`R_{i,2}` and
|
|
||||||
:math:`R_{i,3}` are reseeded from :math:`R_{i,1}`. Every :math:`2^24`
|
|
||||||
iterations, :math:`R_{i,1}`, :math:`R_{i,2}` and :math:`R_{i,3}` are reseeded
|
|
||||||
from :math:`R_{i,0}`.
|
|
||||||
|
|
||||||
This scheme allows the ratchet to be advanced an arbitrary amount forwards
|
|
||||||
while needing at most 1023 hash computations. A recipient can decrypt
|
|
||||||
conversation history onwards from the earliest value of the ratchet it is aware
|
|
||||||
of, but cannot decrypt history from before that point without reversing the
|
|
||||||
hash function.
|
|
||||||
|
|
||||||
For outbound sessions, the updated ratchet and counter are stored in the
|
For outbound sessions, the updated ratchet and counter are stored in the
|
||||||
session.
|
session.
|
||||||
|
@ -215,8 +233,8 @@ followed by the value encoded as a variable length integer. If the value is
|
||||||
a string then the tag is followed by the length of the string encoded as
|
a string then the tag is followed by the length of the string encoded as
|
||||||
a variable length integer followed by the string itself.
|
a variable length integer followed by the string itself.
|
||||||
|
|
||||||
Olm uses a variable length encoding for integers. Each integer is encoded as a
|
Megolm uses a variable length encoding for integers. Each integer is encoded as
|
||||||
sequence of bytes with the high bit set followed by a byte with the high bit
|
a sequence of bytes with the high bit set followed by a byte with the high bit
|
||||||
clear. The seven low bits of each byte store the bits of the integer. The least
|
clear. The seven low bits of each byte store the bits of the integer. The least
|
||||||
significant bits are stored in the first byte.
|
significant bits are stored in the first byte.
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue