Squashed 'lib/curve25519-donna/' content from commit 28772f3
git-subtree-dir: lib/curve25519-donna git-subtree-split: 28772f37a4b8a57ab9439b9e79b19f9abee686da
This commit is contained in:
commit
e50ac70731
23 changed files with 2353 additions and 0 deletions
12
.gitignore
vendored
Normal file
12
.gitignore
vendored
Normal file
|
@ -0,0 +1,12 @@
|
|||
/curve25519-donna-c64.a
|
||||
/curve25519-donna.a
|
||||
/test-curve25519-donna
|
||||
/speed-curve25519-donna
|
||||
/test-curve25519-donna-c64
|
||||
/speed-curve25519-donna-c64
|
||||
/test-sc-curve25519-donna-c64
|
||||
/build
|
||||
*.o
|
||||
*.pyc
|
||||
/dist
|
||||
/MANIFEST
|
46
LICENSE.md
Normal file
46
LICENSE.md
Normal file
|
@ -0,0 +1,46 @@
|
|||
Copyright 2008, Google Inc.
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
* Neither the name of Google Inc. nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
curve25519-donna: Curve25519 elliptic curve, public key function
|
||||
|
||||
http://code.google.com/p/curve25519-donna/
|
||||
|
||||
Adam Langley <agl@imperialviolet.org>
|
||||
|
||||
Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to>
|
||||
|
||||
More information about curve25519 can be found here
|
||||
http://cr.yp.to/ecdh.html
|
||||
|
||||
djb's sample implementation of curve25519 is written in a special assembly
|
||||
language called qhasm and uses the floating point registers.
|
||||
|
||||
This is, almost, a clean room reimplementation from the curve25519 paper. It
|
||||
uses many of the tricks described therein. Only the crecip function is taken
|
||||
from the sample implementation.
|
56
Makefile
Normal file
56
Makefile
Normal file
|
@ -0,0 +1,56 @@
|
|||
CFLAGS=-Wmissing-prototypes -Wdeclaration-after-statement -O2 -Wall
|
||||
CFLAGS_32=-m32
|
||||
|
||||
targets: curve25519-donna.a curve25519-donna-c64.a
|
||||
|
||||
test: test-donna test-donna-c64
|
||||
|
||||
clean:
|
||||
rm -f *.o *.a *.pp test-curve25519-donna test-curve25519-donna-c64 speed-curve25519-donna speed-curve25519-donna-c64 test-noncanon-curve25519-donna test-noncanon-curve25519-donna-c64
|
||||
|
||||
curve25519-donna.a: curve25519-donna.o
|
||||
ar -rc curve25519-donna.a curve25519-donna.o
|
||||
ranlib curve25519-donna.a
|
||||
|
||||
curve25519-donna.o: curve25519-donna.c
|
||||
gcc -c curve25519-donna.c $(CFLAGS) $(CFLAGS_32)
|
||||
|
||||
curve25519-donna-c64.a: curve25519-donna-c64.o
|
||||
ar -rc curve25519-donna-c64.a curve25519-donna-c64.o
|
||||
ranlib curve25519-donna-c64.a
|
||||
|
||||
curve25519-donna-c64.o: curve25519-donna-c64.c
|
||||
gcc -c curve25519-donna-c64.c $(CFLAGS)
|
||||
|
||||
test-donna: test-curve25519-donna
|
||||
./test-curve25519-donna | head -123456 | tail -1
|
||||
|
||||
test-donna-c64: test-curve25519-donna-c64
|
||||
./test-curve25519-donna-c64 | head -123456 | tail -1
|
||||
|
||||
test-curve25519-donna: test-curve25519.c curve25519-donna.a
|
||||
gcc -o test-curve25519-donna test-curve25519.c curve25519-donna.a $(CFLAGS) $(CFLAGS_32)
|
||||
|
||||
test-curve25519-donna-c64: test-curve25519.c curve25519-donna-c64.a
|
||||
gcc -o test-curve25519-donna-c64 test-curve25519.c curve25519-donna-c64.a $(CFLAGS)
|
||||
|
||||
speed-curve25519-donna: speed-curve25519.c curve25519-donna.a
|
||||
gcc -o speed-curve25519-donna speed-curve25519.c curve25519-donna.a $(CFLAGS) $(CFLAGS_32)
|
||||
|
||||
speed-curve25519-donna-c64: speed-curve25519.c curve25519-donna-c64.a
|
||||
gcc -o speed-curve25519-donna-c64 speed-curve25519.c curve25519-donna-c64.a $(CFLAGS)
|
||||
|
||||
test-sc-curve25519-donna-c64: test-sc-curve25519.c curve25519-donna-c64.a
|
||||
gcc -o test-sc-curve25519-donna-c64 -O test-sc-curve25519.c curve25519-donna-c64.a test-sc-curve25519.s $(CFLAGS)
|
||||
|
||||
test-noncanon-donna: test-noncanon-curve25519-donna
|
||||
./test-noncanon-curve25519-donna
|
||||
|
||||
test-noncanon-donna-c64: test-noncanon-curve25519-donna-c64
|
||||
./test-noncanon-curve25519-donna-c64
|
||||
|
||||
test-noncanon-curve25519-donna: test-noncanon.c curve25519-donna.a
|
||||
gcc -o test-noncanon-curve25519-donna test-noncanon.c curve25519-donna.a $(CFLAGS) $(CFLAGS_32)
|
||||
|
||||
test-noncanon-curve25519-donna-c64: test-noncanon.c curve25519-donna-c64.a
|
||||
gcc -o test-noncanon-curve25519-donna-c64 test-noncanon.c curve25519-donna-c64.a $(CFLAGS)
|
40
README
Normal file
40
README
Normal file
|
@ -0,0 +1,40 @@
|
|||
See http://code.google.com/p/curve25519-donna/ for details.
|
||||
|
||||
BUILDING:
|
||||
|
||||
If you run `make`, two .a archives will be built, similar to djb's curve25519
|
||||
code. Alternatively, read on:
|
||||
|
||||
The C implementation is contained within curve25519-donna.c. It has no external
|
||||
dependancies and is BSD licenced. You can copy/include/link it directly in with
|
||||
your program. Recommended C flags: -O2
|
||||
|
||||
The x86-64 bit implementation is contained within curve25519-donna-x86-64.c and
|
||||
curve25519-donna-x86-64.s. Build like this:
|
||||
|
||||
% cpp curve25519-donna-x86-64.s > curve25519-donna-x86-64.s.pp
|
||||
% as -o curve25519-donna-x86-64.s.o curve25519-donna-x86-64.s.pp
|
||||
% gcc -O2 -c curve25519-donna-x86-64.c
|
||||
|
||||
Then the two .o files can be linked in
|
||||
|
||||
USAGE:
|
||||
|
||||
The usage is exactly the same as djb's code (as described at
|
||||
http://cr.yp.to/ecdh.html) expect that the function is called curve25519_donna.
|
||||
|
||||
In short,
|
||||
|
||||
To generate a private key just generate 32 random bytes.
|
||||
|
||||
To generate the public key, just do:
|
||||
|
||||
static const uint8_t basepoint[32] = {9};
|
||||
curve25519_donna(mypublic, mysecret, basepoint);
|
||||
|
||||
To generate an agreed key do:
|
||||
|
||||
uint8_t shared_key[32];
|
||||
curve25519_donna(shared_key, mysecret, theirpublic);
|
||||
|
||||
And hash the shared_key with a cryptographic hash function before using.
|
118
contrib/Curve25519Donna.c
Normal file
118
contrib/Curve25519Donna.c
Normal file
|
@ -0,0 +1,118 @@
|
|||
/*
|
||||
James Robson
|
||||
Public domain.
|
||||
*/
|
||||
|
||||
#include "Curve25519Donna.h"
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
extern void curve25519_donna(unsigned char *output, const unsigned char *a,
|
||||
const unsigned char *b);
|
||||
|
||||
unsigned char*
|
||||
as_unsigned_char_array(JNIEnv* env, jbyteArray array, int* len);
|
||||
|
||||
jbyteArray as_byte_array(JNIEnv* env, unsigned char* buf, int len);
|
||||
|
||||
|
||||
jbyteArray as_byte_array(JNIEnv* env, unsigned char* buf, int len) {
|
||||
jbyteArray array = (*env)->NewByteArray(env, len);
|
||||
(*env)->SetByteArrayRegion(env, array, 0, len, (jbyte*)buf);
|
||||
|
||||
//int i;
|
||||
//for (i = 0;i < len;++i) printf("%02x",(unsigned int) buf[i]); printf(" ");
|
||||
//printf("\n");
|
||||
|
||||
return array;
|
||||
}
|
||||
|
||||
unsigned char*
|
||||
as_unsigned_char_array(JNIEnv* env, jbyteArray array, int* len) {
|
||||
|
||||
*len = (*env)->GetArrayLength(env, array);
|
||||
unsigned char* buf = (unsigned char*)calloc(*len+1, sizeof(char));
|
||||
(*env)->GetByteArrayRegion (env, array, 0, *len, (jbyte*)buf);
|
||||
return buf;
|
||||
|
||||
}
|
||||
|
||||
JNIEXPORT jbyteArray JNICALL Java_Curve25519Donna_curve25519Donna
|
||||
(JNIEnv *env, jobject obj, jbyteArray a, jbyteArray b) {
|
||||
|
||||
unsigned char o[32] = {0};
|
||||
int l1, l2;
|
||||
unsigned char* a1 = as_unsigned_char_array(env, a, &l1);
|
||||
unsigned char* b1 = as_unsigned_char_array(env, b, &l2);
|
||||
|
||||
if ( !(l1 == 32 && l2 == 32) ) {
|
||||
fprintf(stderr, "Error, must be length 32");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
||||
curve25519_donna(o, (const unsigned char*)a1, (const unsigned char*)b1);
|
||||
|
||||
free(a1);
|
||||
free(b1);
|
||||
|
||||
return as_byte_array(env, (unsigned char*)o, 32);
|
||||
}
|
||||
|
||||
JNIEXPORT jbyteArray JNICALL Java_Curve25519Donna_makePrivate
|
||||
(JNIEnv *env, jobject obj, jbyteArray secret) {
|
||||
|
||||
int len;
|
||||
unsigned char* k = as_unsigned_char_array(env, secret, &len);
|
||||
|
||||
if (len != 32) {
|
||||
fprintf(stderr, "Error, must be length 32");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
k[0] &= 248;
|
||||
k[31] &= 127;
|
||||
k[31] |= 64;
|
||||
return as_byte_array(env, k, 32);
|
||||
}
|
||||
|
||||
JNIEXPORT jbyteArray JNICALL Java_Curve25519Donna_getPublic
|
||||
(JNIEnv *env, jobject obj, jbyteArray privkey) {
|
||||
|
||||
int len;
|
||||
unsigned char* private = as_unsigned_char_array(env, privkey, &len);
|
||||
|
||||
if (len != 32) {
|
||||
fprintf(stderr, "Error, must be length 32");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
unsigned char pubkey[32];
|
||||
unsigned char basepoint[32] = {9};
|
||||
|
||||
curve25519_donna(pubkey, private, basepoint);
|
||||
return as_byte_array(env, (unsigned char*)pubkey, 32);
|
||||
}
|
||||
|
||||
JNIEXPORT jbyteArray JNICALL Java_Curve25519Donna_makeSharedSecret
|
||||
(JNIEnv *env, jobject obj, jbyteArray privkey, jbyteArray their_pubkey) {
|
||||
|
||||
unsigned char shared_secret[32];
|
||||
|
||||
int l1, l2;
|
||||
unsigned char* private = as_unsigned_char_array(env, privkey, &l1);
|
||||
unsigned char* pubkey = as_unsigned_char_array(env, their_pubkey, &l2);
|
||||
|
||||
if ( !(l1 == 32 && l2 == 32) ) {
|
||||
fprintf(stderr, "Error, must be length 32");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
curve25519_donna(shared_secret, private, pubkey);
|
||||
return as_byte_array(env, (unsigned char*)shared_secret, 32);
|
||||
}
|
||||
|
||||
JNIEXPORT void JNICALL Java_Curve25519Donna_helowrld
|
||||
(JNIEnv *env, jobject obj) {
|
||||
printf("helowrld\n");
|
||||
}
|
53
contrib/Curve25519Donna.h
Normal file
53
contrib/Curve25519Donna.h
Normal file
|
@ -0,0 +1,53 @@
|
|||
/* DO NOT EDIT THIS FILE - it is machine generated */
|
||||
#include <jni.h>
|
||||
/* Header for class Curve25519Donna */
|
||||
|
||||
#ifndef _Included_Curve25519Donna
|
||||
#define _Included_Curve25519Donna
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
/*
|
||||
* Class: Curve25519Donna
|
||||
* Method: curve25519Donna
|
||||
* Signature: ([B[B)[B
|
||||
*/
|
||||
JNIEXPORT jbyteArray JNICALL Java_Curve25519Donna_curve25519Donna
|
||||
(JNIEnv *, jobject, jbyteArray, jbyteArray);
|
||||
|
||||
/*
|
||||
* Class: Curve25519Donna
|
||||
* Method: makePrivate
|
||||
* Signature: ([B)[B
|
||||
*/
|
||||
JNIEXPORT jbyteArray JNICALL Java_Curve25519Donna_makePrivate
|
||||
(JNIEnv *, jobject, jbyteArray);
|
||||
|
||||
/*
|
||||
* Class: Curve25519Donna
|
||||
* Method: getPublic
|
||||
* Signature: ([B)[B
|
||||
*/
|
||||
JNIEXPORT jbyteArray JNICALL Java_Curve25519Donna_getPublic
|
||||
(JNIEnv *, jobject, jbyteArray);
|
||||
|
||||
/*
|
||||
* Class: Curve25519Donna
|
||||
* Method: makeSharedSecret
|
||||
* Signature: ([B[B)[B
|
||||
*/
|
||||
JNIEXPORT jbyteArray JNICALL Java_Curve25519Donna_makeSharedSecret
|
||||
(JNIEnv *, jobject, jbyteArray, jbyteArray);
|
||||
|
||||
/*
|
||||
* Class: Curve25519Donna
|
||||
* Method: helowrld
|
||||
* Signature: ()V
|
||||
*/
|
||||
JNIEXPORT void JNICALL Java_Curve25519Donna_helowrld
|
||||
(JNIEnv *, jobject);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif
|
77
contrib/Curve25519Donna.java
Normal file
77
contrib/Curve25519Donna.java
Normal file
|
@ -0,0 +1,77 @@
|
|||
/*
|
||||
James Robson
|
||||
Public domain.
|
||||
*/
|
||||
|
||||
public class Curve25519Donna {
|
||||
|
||||
final protected static char[] hexArray = "0123456789ABCDEF".toCharArray();
|
||||
|
||||
public static String bytesToHex(byte[] bytes) {
|
||||
char[] hexChars = new char[bytes.length * 2];
|
||||
int v;
|
||||
for ( int j = 0; j < bytes.length; j++ ) {
|
||||
v = bytes[j] & 0xFF;
|
||||
hexChars[j * 2] = hexArray[v >>> 4];
|
||||
hexChars[j * 2 + 1] = hexArray[v & 0x0F];
|
||||
}
|
||||
return new String(hexChars);
|
||||
}
|
||||
|
||||
public native byte[] curve25519Donna(byte[] a, byte[] b);
|
||||
public native byte[] makePrivate(byte[] secret);
|
||||
public native byte[] getPublic(byte[] privkey);
|
||||
public native byte[] makeSharedSecret(byte[] privkey, byte[] theirPubKey);
|
||||
public native void helowrld();
|
||||
|
||||
// Uncomment if your Java is 32-bit:
|
||||
//static { System.loadLibrary("Curve25519Donna"); }
|
||||
|
||||
// Otherwise, load this 64-bit .jnilib:
|
||||
static { System.loadLibrary("Curve25519Donna_64"); }
|
||||
|
||||
/*
|
||||
To give the old tires a kick (OSX):
|
||||
java -cp `pwd` Curve25519Donna
|
||||
*/
|
||||
public static void main (String[] args) {
|
||||
|
||||
Curve25519Donna c = new Curve25519Donna();
|
||||
|
||||
// These should be 32 bytes long
|
||||
byte[] user1Secret = "abcdefghijklmnopqrstuvwxyz123456".getBytes();
|
||||
byte[] user2Secret = "654321zyxwvutsrqponmlkjihgfedcba".getBytes();
|
||||
|
||||
|
||||
// You can use the curve function directly...
|
||||
|
||||
//byte[] o = c.curve25519Donna(a, b);
|
||||
//System.out.println("o = " + bytesToHex(o));
|
||||
|
||||
|
||||
// ... but it's not really necessary. Just use the following
|
||||
// convenience methods:
|
||||
|
||||
byte[] privKey = c.makePrivate(user1Secret);
|
||||
byte[] pubKey = c.getPublic(privKey);
|
||||
|
||||
byte[] privKey2 = c.makePrivate(user2Secret);
|
||||
byte[] pubKey2 = c.getPublic(privKey2);
|
||||
|
||||
System.out.println("'user1' privKey = " + bytesToHex(privKey));
|
||||
System.out.println("'user1' pubKey = " + bytesToHex(pubKey));
|
||||
System.out.println("===================================================");
|
||||
|
||||
System.out.println("'user2' privKey = " + bytesToHex(privKey2));
|
||||
System.out.println("'user2' pubKey = " + bytesToHex(pubKey2));
|
||||
System.out.println("===================================================");
|
||||
|
||||
|
||||
byte[] ss1 = c.makeSharedSecret(privKey, pubKey2);
|
||||
System.out.println("'user1' computes shared secret: " + bytesToHex(ss1));
|
||||
|
||||
byte[] ss2 = c.makeSharedSecret(privKey2, pubKey);
|
||||
System.out.println("'user2' computes shared secret: " + bytesToHex(ss2));
|
||||
|
||||
}
|
||||
}
|
68
contrib/make-snippets
Normal file
68
contrib/make-snippets
Normal file
|
@ -0,0 +1,68 @@
|
|||
CFLAGS=-Wmissing-prototypes -Wdeclaration-after-statement -O2 -Wall
|
||||
CC=clang
|
||||
|
||||
|
||||
targets: curve25519-donna.a curve25519-donna-c64.a
|
||||
|
||||
test: test-donna test-donna-c64
|
||||
|
||||
|
||||
clean:
|
||||
rm -f java-src/*.class java-src/*.jnilib *.dylib *.o *.a *.pp test-curve25519-donna test-curve25519-donna-c64 speed-curve25519-donna speed-curve25519-donna-c64
|
||||
|
||||
curve25519-donna.a: curve25519-donna.o
|
||||
ar -rc curve25519-donna.a curve25519-donna.o
|
||||
ranlib curve25519-donna.a
|
||||
|
||||
|
||||
##### OSX dynamic library (32- & 64-bit)
|
||||
|
||||
curve25519donna.dylib: curve25519-donna.a curve25519-donna-c64.a
|
||||
$(CC) -m32 -fpic -shared -Wl,-all_load curve25519-donna.a -Wl,-all_load -o libcurve25519donna.dylib
|
||||
$(CC) -fpic -shared -Wl,-all_load curve25519-donna-c64.a -Wl,-all_load -o libcurve25519donna_64.dylib
|
||||
|
||||
##### OSX/Java section hence
|
||||
|
||||
# Java JNI - compiled for OSX (32- & 64-bit)
|
||||
Curve25519Donna.class:
|
||||
cd java-src; javah -jni Curve25519Donna; cd ..
|
||||
cd java-src; javac Curve25519Donna.java; cd ..
|
||||
|
||||
Curve25519Donna.jnilib: curve25519-donna.a curve25519-donna-c64.a Curve25519Donna.class
|
||||
@echo "Building 32-bit..."
|
||||
clang -o java-src/libCurve25519Donna.jnilib $(CFLAGS) -lc -shared -m32 -I /System/Library/Frameworks/JavaVM.framework/Headers curve25519-donna.o java-src/Curve25519Donna.c
|
||||
@echo "Building 64-bit..."
|
||||
clang -o java-src/libCurve25519Donna_64.jnilib $(CFLAGS) -lc -shared -I /System/Library/Frameworks/JavaVM.framework/Headers curve25519-donna-c64.o java-src/Curve25519Donna.c
|
||||
|
||||
##### OSX/Java section end
|
||||
|
||||
curve25519-donna.o: curve25519-donna.c
|
||||
$(CC) -c curve25519-donna.c $(CFLAGS) -m32
|
||||
|
||||
curve25519-donna-c64.a: curve25519-donna-c64.o
|
||||
ar -rc curve25519-donna-c64.a curve25519-donna-c64.o
|
||||
ranlib curve25519-donna-c64.a
|
||||
|
||||
curve25519-donna-c64.o: curve25519-donna-c64.c
|
||||
$(CC) -c curve25519-donna-c64.c $(CFLAGS)
|
||||
|
||||
test-donna: test-curve25519-donna
|
||||
./test-curve25519-donna | head -123456 | tail -1
|
||||
|
||||
test-donna-c64: test-curve25519-donna-c64
|
||||
./test-curve25519-donna-c64 | head -123456 | tail -1
|
||||
|
||||
test-curve25519-donna: test-curve25519.c curve25519-donna.a
|
||||
$(CC) -o test-curve25519-donna test-curve25519.c curve25519-donna.a $(CFLAGS) -m32
|
||||
|
||||
test-curve25519-donna-c64: test-curve25519.c curve25519-donna-c64.a
|
||||
$(CC) -o test-curve25519-donna-c64 test-curve25519.c curve25519-donna-c64.a $(CFLAGS)
|
||||
|
||||
speed-curve25519-donna: speed-curve25519.c curve25519-donna.a
|
||||
$(CC) -o speed-curve25519-donna speed-curve25519.c curve25519-donna.a $(CFLAGS) -m32
|
||||
|
||||
speed-curve25519-donna-c64: speed-curve25519.c curve25519-donna-c64.a
|
||||
$(CC) -o speed-curve25519-donna-c64 speed-curve25519.c curve25519-donna-c64.a $(CFLAGS)
|
||||
|
||||
test-sc-curve25519-donna-c64: test-sc-curve25519.c curve25519-donna-c64.a
|
||||
$(CC) -o test-sc-curve25519-donna-c64 -O test-sc-curve25519.c curve25519-donna-c64.a test-sc-curve25519.s $(CFLAGS)
|
449
curve25519-donna-c64.c
Normal file
449
curve25519-donna-c64.c
Normal file
|
@ -0,0 +1,449 @@
|
|||
/* Copyright 2008, Google Inc.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Code released into the public domain.
|
||||
*
|
||||
* curve25519-donna: Curve25519 elliptic curve, public key function
|
||||
*
|
||||
* http://code.google.com/p/curve25519-donna/
|
||||
*
|
||||
* Adam Langley <agl@imperialviolet.org>
|
||||
*
|
||||
* Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to>
|
||||
*
|
||||
* More information about curve25519 can be found here
|
||||
* http://cr.yp.to/ecdh.html
|
||||
*
|
||||
* djb's sample implementation of curve25519 is written in a special assembly
|
||||
* language called qhasm and uses the floating point registers.
|
||||
*
|
||||
* This is, almost, a clean room reimplementation from the curve25519 paper. It
|
||||
* uses many of the tricks described therein. Only the crecip function is taken
|
||||
* from the sample implementation.
|
||||
*/
|
||||
|
||||
#include <string.h>
|
||||
#include <stdint.h>
|
||||
|
||||
typedef uint8_t u8;
|
||||
typedef uint64_t limb;
|
||||
typedef limb felem[5];
|
||||
// This is a special gcc mode for 128-bit integers. It's implemented on 64-bit
|
||||
// platforms only as far as I know.
|
||||
typedef unsigned uint128_t __attribute__((mode(TI)));
|
||||
|
||||
#undef force_inline
|
||||
#define force_inline __attribute__((always_inline))
|
||||
|
||||
/* Sum two numbers: output += in */
|
||||
static inline void force_inline
|
||||
fsum(limb *output, const limb *in) {
|
||||
output[0] += in[0];
|
||||
output[1] += in[1];
|
||||
output[2] += in[2];
|
||||
output[3] += in[3];
|
||||
output[4] += in[4];
|
||||
}
|
||||
|
||||
/* Find the difference of two numbers: output = in - output
|
||||
* (note the order of the arguments!)
|
||||
*
|
||||
* Assumes that out[i] < 2**52
|
||||
* On return, out[i] < 2**55
|
||||
*/
|
||||
static inline void force_inline
|
||||
fdifference_backwards(felem out, const felem in) {
|
||||
/* 152 is 19 << 3 */
|
||||
static const limb two54m152 = (((limb)1) << 54) - 152;
|
||||
static const limb two54m8 = (((limb)1) << 54) - 8;
|
||||
|
||||
out[0] = in[0] + two54m152 - out[0];
|
||||
out[1] = in[1] + two54m8 - out[1];
|
||||
out[2] = in[2] + two54m8 - out[2];
|
||||
out[3] = in[3] + two54m8 - out[3];
|
||||
out[4] = in[4] + two54m8 - out[4];
|
||||
}
|
||||
|
||||
/* Multiply a number by a scalar: output = in * scalar */
|
||||
static inline void force_inline
|
||||
fscalar_product(felem output, const felem in, const limb scalar) {
|
||||
uint128_t a;
|
||||
|
||||
a = ((uint128_t) in[0]) * scalar;
|
||||
output[0] = ((limb)a) & 0x7ffffffffffff;
|
||||
|
||||
a = ((uint128_t) in[1]) * scalar + ((limb) (a >> 51));
|
||||
output[1] = ((limb)a) & 0x7ffffffffffff;
|
||||
|
||||
a = ((uint128_t) in[2]) * scalar + ((limb) (a >> 51));
|
||||
output[2] = ((limb)a) & 0x7ffffffffffff;
|
||||
|
||||
a = ((uint128_t) in[3]) * scalar + ((limb) (a >> 51));
|
||||
output[3] = ((limb)a) & 0x7ffffffffffff;
|
||||
|
||||
a = ((uint128_t) in[4]) * scalar + ((limb) (a >> 51));
|
||||
output[4] = ((limb)a) & 0x7ffffffffffff;
|
||||
|
||||
output[0] += (a >> 51) * 19;
|
||||
}
|
||||
|
||||
/* Multiply two numbers: output = in2 * in
|
||||
*
|
||||
* output must be distinct to both inputs. The inputs are reduced coefficient
|
||||
* form, the output is not.
|
||||
*
|
||||
* Assumes that in[i] < 2**55 and likewise for in2.
|
||||
* On return, output[i] < 2**52
|
||||
*/
|
||||
static inline void force_inline
|
||||
fmul(felem output, const felem in2, const felem in) {
|
||||
uint128_t t[5];
|
||||
limb r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c;
|
||||
|
||||
r0 = in[0];
|
||||
r1 = in[1];
|
||||
r2 = in[2];
|
||||
r3 = in[3];
|
||||
r4 = in[4];
|
||||
|
||||
s0 = in2[0];
|
||||
s1 = in2[1];
|
||||
s2 = in2[2];
|
||||
s3 = in2[3];
|
||||
s4 = in2[4];
|
||||
|
||||
t[0] = ((uint128_t) r0) * s0;
|
||||
t[1] = ((uint128_t) r0) * s1 + ((uint128_t) r1) * s0;
|
||||
t[2] = ((uint128_t) r0) * s2 + ((uint128_t) r2) * s0 + ((uint128_t) r1) * s1;
|
||||
t[3] = ((uint128_t) r0) * s3 + ((uint128_t) r3) * s0 + ((uint128_t) r1) * s2 + ((uint128_t) r2) * s1;
|
||||
t[4] = ((uint128_t) r0) * s4 + ((uint128_t) r4) * s0 + ((uint128_t) r3) * s1 + ((uint128_t) r1) * s3 + ((uint128_t) r2) * s2;
|
||||
|
||||
r4 *= 19;
|
||||
r1 *= 19;
|
||||
r2 *= 19;
|
||||
r3 *= 19;
|
||||
|
||||
t[0] += ((uint128_t) r4) * s1 + ((uint128_t) r1) * s4 + ((uint128_t) r2) * s3 + ((uint128_t) r3) * s2;
|
||||
t[1] += ((uint128_t) r4) * s2 + ((uint128_t) r2) * s4 + ((uint128_t) r3) * s3;
|
||||
t[2] += ((uint128_t) r4) * s3 + ((uint128_t) r3) * s4;
|
||||
t[3] += ((uint128_t) r4) * s4;
|
||||
|
||||
r0 = (limb)t[0] & 0x7ffffffffffff; c = (limb)(t[0] >> 51);
|
||||
t[1] += c; r1 = (limb)t[1] & 0x7ffffffffffff; c = (limb)(t[1] >> 51);
|
||||
t[2] += c; r2 = (limb)t[2] & 0x7ffffffffffff; c = (limb)(t[2] >> 51);
|
||||
t[3] += c; r3 = (limb)t[3] & 0x7ffffffffffff; c = (limb)(t[3] >> 51);
|
||||
t[4] += c; r4 = (limb)t[4] & 0x7ffffffffffff; c = (limb)(t[4] >> 51);
|
||||
r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff;
|
||||
r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffff;
|
||||
r2 += c;
|
||||
|
||||
output[0] = r0;
|
||||
output[1] = r1;
|
||||
output[2] = r2;
|
||||
output[3] = r3;
|
||||
output[4] = r4;
|
||||
}
|
||||
|
||||
static inline void force_inline
|
||||
fsquare_times(felem output, const felem in, limb count) {
|
||||
uint128_t t[5];
|
||||
limb r0,r1,r2,r3,r4,c;
|
||||
limb d0,d1,d2,d4,d419;
|
||||
|
||||
r0 = in[0];
|
||||
r1 = in[1];
|
||||
r2 = in[2];
|
||||
r3 = in[3];
|
||||
r4 = in[4];
|
||||
|
||||
do {
|
||||
d0 = r0 * 2;
|
||||
d1 = r1 * 2;
|
||||
d2 = r2 * 2 * 19;
|
||||
d419 = r4 * 19;
|
||||
d4 = d419 * 2;
|
||||
|
||||
t[0] = ((uint128_t) r0) * r0 + ((uint128_t) d4) * r1 + (((uint128_t) d2) * (r3 ));
|
||||
t[1] = ((uint128_t) d0) * r1 + ((uint128_t) d4) * r2 + (((uint128_t) r3) * (r3 * 19));
|
||||
t[2] = ((uint128_t) d0) * r2 + ((uint128_t) r1) * r1 + (((uint128_t) d4) * (r3 ));
|
||||
t[3] = ((uint128_t) d0) * r3 + ((uint128_t) d1) * r2 + (((uint128_t) r4) * (d419 ));
|
||||
t[4] = ((uint128_t) d0) * r4 + ((uint128_t) d1) * r3 + (((uint128_t) r2) * (r2 ));
|
||||
|
||||
r0 = (limb)t[0] & 0x7ffffffffffff; c = (limb)(t[0] >> 51);
|
||||
t[1] += c; r1 = (limb)t[1] & 0x7ffffffffffff; c = (limb)(t[1] >> 51);
|
||||
t[2] += c; r2 = (limb)t[2] & 0x7ffffffffffff; c = (limb)(t[2] >> 51);
|
||||
t[3] += c; r3 = (limb)t[3] & 0x7ffffffffffff; c = (limb)(t[3] >> 51);
|
||||
t[4] += c; r4 = (limb)t[4] & 0x7ffffffffffff; c = (limb)(t[4] >> 51);
|
||||
r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff;
|
||||
r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffff;
|
||||
r2 += c;
|
||||
} while(--count);
|
||||
|
||||
output[0] = r0;
|
||||
output[1] = r1;
|
||||
output[2] = r2;
|
||||
output[3] = r3;
|
||||
output[4] = r4;
|
||||
}
|
||||
|
||||
/* Load a little-endian 64-bit number */
|
||||
static limb
|
||||
load_limb(const u8 *in) {
|
||||
return
|
||||
((limb)in[0]) |
|
||||
(((limb)in[1]) << 8) |
|
||||
(((limb)in[2]) << 16) |
|
||||
(((limb)in[3]) << 24) |
|
||||
(((limb)in[4]) << 32) |
|
||||
(((limb)in[5]) << 40) |
|
||||
(((limb)in[6]) << 48) |
|
||||
(((limb)in[7]) << 56);
|
||||
}
|
||||
|
||||
static void
|
||||
store_limb(u8 *out, limb in) {
|
||||
out[0] = in & 0xff;
|
||||
out[1] = (in >> 8) & 0xff;
|
||||
out[2] = (in >> 16) & 0xff;
|
||||
out[3] = (in >> 24) & 0xff;
|
||||
out[4] = (in >> 32) & 0xff;
|
||||
out[5] = (in >> 40) & 0xff;
|
||||
out[6] = (in >> 48) & 0xff;
|
||||
out[7] = (in >> 56) & 0xff;
|
||||
}
|
||||
|
||||
/* Take a little-endian, 32-byte number and expand it into polynomial form */
|
||||
static void
|
||||
fexpand(limb *output, const u8 *in) {
|
||||
output[0] = load_limb(in) & 0x7ffffffffffff;
|
||||
output[1] = (load_limb(in+6) >> 3) & 0x7ffffffffffff;
|
||||
output[2] = (load_limb(in+12) >> 6) & 0x7ffffffffffff;
|
||||
output[3] = (load_limb(in+19) >> 1) & 0x7ffffffffffff;
|
||||
output[4] = (load_limb(in+24) >> 12) & 0x7ffffffffffff;
|
||||
}
|
||||
|
||||
/* Take a fully reduced polynomial form number and contract it into a
|
||||
* little-endian, 32-byte array
|
||||
*/
|
||||
static void
|
||||
fcontract(u8 *output, const felem input) {
|
||||
uint128_t t[5];
|
||||
|
||||
t[0] = input[0];
|
||||
t[1] = input[1];
|
||||
t[2] = input[2];
|
||||
t[3] = input[3];
|
||||
t[4] = input[4];
|
||||
|
||||
t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff;
|
||||
t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff;
|
||||
t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff;
|
||||
t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff;
|
||||
t[0] += 19 * (t[4] >> 51); t[4] &= 0x7ffffffffffff;
|
||||
|
||||
t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff;
|
||||
t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff;
|
||||
t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff;
|
||||
t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff;
|
||||
t[0] += 19 * (t[4] >> 51); t[4] &= 0x7ffffffffffff;
|
||||
|
||||
/* now t is between 0 and 2^255-1, properly carried. */
|
||||
/* case 1: between 0 and 2^255-20. case 2: between 2^255-19 and 2^255-1. */
|
||||
|
||||
t[0] += 19;
|
||||
|
||||
t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff;
|
||||
t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff;
|
||||
t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff;
|
||||
t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff;
|
||||
t[0] += 19 * (t[4] >> 51); t[4] &= 0x7ffffffffffff;
|
||||
|
||||
/* now between 19 and 2^255-1 in both cases, and offset by 19. */
|
||||
|
||||
t[0] += 0x8000000000000 - 19;
|
||||
t[1] += 0x8000000000000 - 1;
|
||||
t[2] += 0x8000000000000 - 1;
|
||||
t[3] += 0x8000000000000 - 1;
|
||||
t[4] += 0x8000000000000 - 1;
|
||||
|
||||
/* now between 2^255 and 2^256-20, and offset by 2^255. */
|
||||
|
||||
t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff;
|
||||
t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff;
|
||||
t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff;
|
||||
t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff;
|
||||
t[4] &= 0x7ffffffffffff;
|
||||
|
||||
store_limb(output, t[0] | (t[1] << 51));
|
||||
store_limb(output+8, (t[1] >> 13) | (t[2] << 38));
|
||||
store_limb(output+16, (t[2] >> 26) | (t[3] << 25));
|
||||
store_limb(output+24, (t[3] >> 39) | (t[4] << 12));
|
||||
}
|
||||
|
||||
/* Input: Q, Q', Q-Q'
|
||||
* Output: 2Q, Q+Q'
|
||||
*
|
||||
* x2 z3: long form
|
||||
* x3 z3: long form
|
||||
* x z: short form, destroyed
|
||||
* xprime zprime: short form, destroyed
|
||||
* qmqp: short form, preserved
|
||||
*/
|
||||
static void
|
||||
fmonty(limb *x2, limb *z2, /* output 2Q */
|
||||
limb *x3, limb *z3, /* output Q + Q' */
|
||||
limb *x, limb *z, /* input Q */
|
||||
limb *xprime, limb *zprime, /* input Q' */
|
||||
const limb *qmqp /* input Q - Q' */) {
|
||||
limb origx[5], origxprime[5], zzz[5], xx[5], zz[5], xxprime[5],
|
||||
zzprime[5], zzzprime[5];
|
||||
|
||||
memcpy(origx, x, 5 * sizeof(limb));
|
||||
fsum(x, z);
|
||||
fdifference_backwards(z, origx); // does x - z
|
||||
|
||||
memcpy(origxprime, xprime, sizeof(limb) * 5);
|
||||
fsum(xprime, zprime);
|
||||
fdifference_backwards(zprime, origxprime);
|
||||
fmul(xxprime, xprime, z);
|
||||
fmul(zzprime, x, zprime);
|
||||
memcpy(origxprime, xxprime, sizeof(limb) * 5);
|
||||
fsum(xxprime, zzprime);
|
||||
fdifference_backwards(zzprime, origxprime);
|
||||
fsquare_times(x3, xxprime, 1);
|
||||
fsquare_times(zzzprime, zzprime, 1);
|
||||
fmul(z3, zzzprime, qmqp);
|
||||
|
||||
fsquare_times(xx, x, 1);
|
||||
fsquare_times(zz, z, 1);
|
||||
fmul(x2, xx, zz);
|
||||
fdifference_backwards(zz, xx); // does zz = xx - zz
|
||||
fscalar_product(zzz, zz, 121665);
|
||||
fsum(zzz, xx);
|
||||
fmul(z2, zz, zzz);
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Maybe swap the contents of two limb arrays (@a and @b), each @len elements
|
||||
// long. Perform the swap iff @swap is non-zero.
|
||||
//
|
||||
// This function performs the swap without leaking any side-channel
|
||||
// information.
|
||||
// -----------------------------------------------------------------------------
|
||||
static void
|
||||
swap_conditional(limb a[5], limb b[5], limb iswap) {
|
||||
unsigned i;
|
||||
const limb swap = -iswap;
|
||||
|
||||
for (i = 0; i < 5; ++i) {
|
||||
const limb x = swap & (a[i] ^ b[i]);
|
||||
a[i] ^= x;
|
||||
b[i] ^= x;
|
||||
}
|
||||
}
|
||||
|
||||
/* Calculates nQ where Q is the x-coordinate of a point on the curve
|
||||
*
|
||||
* resultx/resultz: the x coordinate of the resulting curve point (short form)
|
||||
* n: a little endian, 32-byte number
|
||||
* q: a point of the curve (short form)
|
||||
*/
|
||||
static void
|
||||
cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) {
|
||||
limb a[5] = {0}, b[5] = {1}, c[5] = {1}, d[5] = {0};
|
||||
limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t;
|
||||
limb e[5] = {0}, f[5] = {1}, g[5] = {0}, h[5] = {1};
|
||||
limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h;
|
||||
|
||||
unsigned i, j;
|
||||
|
||||
memcpy(nqpqx, q, sizeof(limb) * 5);
|
||||
|
||||
for (i = 0; i < 32; ++i) {
|
||||
u8 byte = n[31 - i];
|
||||
for (j = 0; j < 8; ++j) {
|
||||
const limb bit = byte >> 7;
|
||||
|
||||
swap_conditional(nqx, nqpqx, bit);
|
||||
swap_conditional(nqz, nqpqz, bit);
|
||||
fmonty(nqx2, nqz2,
|
||||
nqpqx2, nqpqz2,
|
||||
nqx, nqz,
|
||||
nqpqx, nqpqz,
|
||||
q);
|
||||
swap_conditional(nqx2, nqpqx2, bit);
|
||||
swap_conditional(nqz2, nqpqz2, bit);
|
||||
|
||||
t = nqx;
|
||||
nqx = nqx2;
|
||||
nqx2 = t;
|
||||
t = nqz;
|
||||
nqz = nqz2;
|
||||
nqz2 = t;
|
||||
t = nqpqx;
|
||||
nqpqx = nqpqx2;
|
||||
nqpqx2 = t;
|
||||
t = nqpqz;
|
||||
nqpqz = nqpqz2;
|
||||
nqpqz2 = t;
|
||||
|
||||
byte <<= 1;
|
||||
}
|
||||
}
|
||||
|
||||
memcpy(resultx, nqx, sizeof(limb) * 5);
|
||||
memcpy(resultz, nqz, sizeof(limb) * 5);
|
||||
}
|
||||
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Shamelessly copied from djb's code, tightened a little
|
||||
// -----------------------------------------------------------------------------
|
||||
static void
|
||||
crecip(felem out, const felem z) {
|
||||
felem a,t0,b,c;
|
||||
|
||||
/* 2 */ fsquare_times(a, z, 1); // a = 2
|
||||
/* 8 */ fsquare_times(t0, a, 2);
|
||||
/* 9 */ fmul(b, t0, z); // b = 9
|
||||
/* 11 */ fmul(a, b, a); // a = 11
|
||||
/* 22 */ fsquare_times(t0, a, 1);
|
||||
/* 2^5 - 2^0 = 31 */ fmul(b, t0, b);
|
||||
/* 2^10 - 2^5 */ fsquare_times(t0, b, 5);
|
||||
/* 2^10 - 2^0 */ fmul(b, t0, b);
|
||||
/* 2^20 - 2^10 */ fsquare_times(t0, b, 10);
|
||||
/* 2^20 - 2^0 */ fmul(c, t0, b);
|
||||
/* 2^40 - 2^20 */ fsquare_times(t0, c, 20);
|
||||
/* 2^40 - 2^0 */ fmul(t0, t0, c);
|
||||
/* 2^50 - 2^10 */ fsquare_times(t0, t0, 10);
|
||||
/* 2^50 - 2^0 */ fmul(b, t0, b);
|
||||
/* 2^100 - 2^50 */ fsquare_times(t0, b, 50);
|
||||
/* 2^100 - 2^0 */ fmul(c, t0, b);
|
||||
/* 2^200 - 2^100 */ fsquare_times(t0, c, 100);
|
||||
/* 2^200 - 2^0 */ fmul(t0, t0, c);
|
||||
/* 2^250 - 2^50 */ fsquare_times(t0, t0, 50);
|
||||
/* 2^250 - 2^0 */ fmul(t0, t0, b);
|
||||
/* 2^255 - 2^5 */ fsquare_times(t0, t0, 5);
|
||||
/* 2^255 - 21 */ fmul(out, t0, a);
|
||||
}
|
||||
|
||||
int curve25519_donna(u8 *, const u8 *, const u8 *);
|
||||
|
||||
int
|
||||
curve25519_donna(u8 *mypublic, const u8 *secret, const u8 *basepoint) {
|
||||
limb bp[5], x[5], z[5], zmone[5];
|
||||
uint8_t e[32];
|
||||
int i;
|
||||
|
||||
for (i = 0;i < 32;++i) e[i] = secret[i];
|
||||
e[0] &= 248;
|
||||
e[31] &= 127;
|
||||
e[31] |= 64;
|
||||
|
||||
fexpand(bp, basepoint);
|
||||
cmult(x, z, e, bp);
|
||||
crecip(zmone, z);
|
||||
fmul(z, x, zmone);
|
||||
fcontract(mypublic, z);
|
||||
return 0;
|
||||
}
|
860
curve25519-donna.c
Normal file
860
curve25519-donna.c
Normal file
|
@ -0,0 +1,860 @@
|
|||
/* Copyright 2008, Google Inc.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are
|
||||
* met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above
|
||||
* copyright notice, this list of conditions and the following disclaimer
|
||||
* in the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
* * Neither the name of Google Inc. nor the names of its
|
||||
* contributors may be used to endorse or promote products derived from
|
||||
* this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
* curve25519-donna: Curve25519 elliptic curve, public key function
|
||||
*
|
||||
* http://code.google.com/p/curve25519-donna/
|
||||
*
|
||||
* Adam Langley <agl@imperialviolet.org>
|
||||
*
|
||||
* Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to>
|
||||
*
|
||||
* More information about curve25519 can be found here
|
||||
* http://cr.yp.to/ecdh.html
|
||||
*
|
||||
* djb's sample implementation of curve25519 is written in a special assembly
|
||||
* language called qhasm and uses the floating point registers.
|
||||
*
|
||||
* This is, almost, a clean room reimplementation from the curve25519 paper. It
|
||||
* uses many of the tricks described therein. Only the crecip function is taken
|
||||
* from the sample implementation. */
|
||||
|
||||
#include <string.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#define inline __inline
|
||||
#endif
|
||||
|
||||
typedef uint8_t u8;
|
||||
typedef int32_t s32;
|
||||
typedef int64_t limb;
|
||||
|
||||
/* Field element representation:
|
||||
*
|
||||
* Field elements are written as an array of signed, 64-bit limbs, least
|
||||
* significant first. The value of the field element is:
|
||||
* x[0] + 2^26·x[1] + x^51·x[2] + 2^102·x[3] + ...
|
||||
*
|
||||
* i.e. the limbs are 26, 25, 26, 25, ... bits wide. */
|
||||
|
||||
/* Sum two numbers: output += in */
|
||||
static void fsum(limb *output, const limb *in) {
|
||||
unsigned i;
|
||||
for (i = 0; i < 10; i += 2) {
|
||||
output[0+i] = output[0+i] + in[0+i];
|
||||
output[1+i] = output[1+i] + in[1+i];
|
||||
}
|
||||
}
|
||||
|
||||
/* Find the difference of two numbers: output = in - output
|
||||
* (note the order of the arguments!). */
|
||||
static void fdifference(limb *output, const limb *in) {
|
||||
unsigned i;
|
||||
for (i = 0; i < 10; ++i) {
|
||||
output[i] = in[i] - output[i];
|
||||
}
|
||||
}
|
||||
|
||||
/* Multiply a number by a scalar: output = in * scalar */
|
||||
static void fscalar_product(limb *output, const limb *in, const limb scalar) {
|
||||
unsigned i;
|
||||
for (i = 0; i < 10; ++i) {
|
||||
output[i] = in[i] * scalar;
|
||||
}
|
||||
}
|
||||
|
||||
/* Multiply two numbers: output = in2 * in
|
||||
*
|
||||
* output must be distinct to both inputs. The inputs are reduced coefficient
|
||||
* form, the output is not.
|
||||
*
|
||||
* output[x] <= 14 * the largest product of the input limbs. */
|
||||
static void fproduct(limb *output, const limb *in2, const limb *in) {
|
||||
output[0] = ((limb) ((s32) in2[0])) * ((s32) in[0]);
|
||||
output[1] = ((limb) ((s32) in2[0])) * ((s32) in[1]) +
|
||||
((limb) ((s32) in2[1])) * ((s32) in[0]);
|
||||
output[2] = 2 * ((limb) ((s32) in2[1])) * ((s32) in[1]) +
|
||||
((limb) ((s32) in2[0])) * ((s32) in[2]) +
|
||||
((limb) ((s32) in2[2])) * ((s32) in[0]);
|
||||
output[3] = ((limb) ((s32) in2[1])) * ((s32) in[2]) +
|
||||
((limb) ((s32) in2[2])) * ((s32) in[1]) +
|
||||
((limb) ((s32) in2[0])) * ((s32) in[3]) +
|
||||
((limb) ((s32) in2[3])) * ((s32) in[0]);
|
||||
output[4] = ((limb) ((s32) in2[2])) * ((s32) in[2]) +
|
||||
2 * (((limb) ((s32) in2[1])) * ((s32) in[3]) +
|
||||
((limb) ((s32) in2[3])) * ((s32) in[1])) +
|
||||
((limb) ((s32) in2[0])) * ((s32) in[4]) +
|
||||
((limb) ((s32) in2[4])) * ((s32) in[0]);
|
||||
output[5] = ((limb) ((s32) in2[2])) * ((s32) in[3]) +
|
||||
((limb) ((s32) in2[3])) * ((s32) in[2]) +
|
||||
((limb) ((s32) in2[1])) * ((s32) in[4]) +
|
||||
((limb) ((s32) in2[4])) * ((s32) in[1]) +
|
||||
((limb) ((s32) in2[0])) * ((s32) in[5]) +
|
||||
((limb) ((s32) in2[5])) * ((s32) in[0]);
|
||||
output[6] = 2 * (((limb) ((s32) in2[3])) * ((s32) in[3]) +
|
||||
((limb) ((s32) in2[1])) * ((s32) in[5]) +
|
||||
((limb) ((s32) in2[5])) * ((s32) in[1])) +
|
||||
((limb) ((s32) in2[2])) * ((s32) in[4]) +
|
||||
((limb) ((s32) in2[4])) * ((s32) in[2]) +
|
||||
((limb) ((s32) in2[0])) * ((s32) in[6]) +
|
||||
((limb) ((s32) in2[6])) * ((s32) in[0]);
|
||||
output[7] = ((limb) ((s32) in2[3])) * ((s32) in[4]) +
|
||||
((limb) ((s32) in2[4])) * ((s32) in[3]) +
|
||||
((limb) ((s32) in2[2])) * ((s32) in[5]) +
|
||||
((limb) ((s32) in2[5])) * ((s32) in[2]) +
|
||||
((limb) ((s32) in2[1])) * ((s32) in[6]) +
|
||||
((limb) ((s32) in2[6])) * ((s32) in[1]) +
|
||||
((limb) ((s32) in2[0])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in2[7])) * ((s32) in[0]);
|
||||
output[8] = ((limb) ((s32) in2[4])) * ((s32) in[4]) +
|
||||
2 * (((limb) ((s32) in2[3])) * ((s32) in[5]) +
|
||||
((limb) ((s32) in2[5])) * ((s32) in[3]) +
|
||||
((limb) ((s32) in2[1])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in2[7])) * ((s32) in[1])) +
|
||||
((limb) ((s32) in2[2])) * ((s32) in[6]) +
|
||||
((limb) ((s32) in2[6])) * ((s32) in[2]) +
|
||||
((limb) ((s32) in2[0])) * ((s32) in[8]) +
|
||||
((limb) ((s32) in2[8])) * ((s32) in[0]);
|
||||
output[9] = ((limb) ((s32) in2[4])) * ((s32) in[5]) +
|
||||
((limb) ((s32) in2[5])) * ((s32) in[4]) +
|
||||
((limb) ((s32) in2[3])) * ((s32) in[6]) +
|
||||
((limb) ((s32) in2[6])) * ((s32) in[3]) +
|
||||
((limb) ((s32) in2[2])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in2[7])) * ((s32) in[2]) +
|
||||
((limb) ((s32) in2[1])) * ((s32) in[8]) +
|
||||
((limb) ((s32) in2[8])) * ((s32) in[1]) +
|
||||
((limb) ((s32) in2[0])) * ((s32) in[9]) +
|
||||
((limb) ((s32) in2[9])) * ((s32) in[0]);
|
||||
output[10] = 2 * (((limb) ((s32) in2[5])) * ((s32) in[5]) +
|
||||
((limb) ((s32) in2[3])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in2[7])) * ((s32) in[3]) +
|
||||
((limb) ((s32) in2[1])) * ((s32) in[9]) +
|
||||
((limb) ((s32) in2[9])) * ((s32) in[1])) +
|
||||
((limb) ((s32) in2[4])) * ((s32) in[6]) +
|
||||
((limb) ((s32) in2[6])) * ((s32) in[4]) +
|
||||
((limb) ((s32) in2[2])) * ((s32) in[8]) +
|
||||
((limb) ((s32) in2[8])) * ((s32) in[2]);
|
||||
output[11] = ((limb) ((s32) in2[5])) * ((s32) in[6]) +
|
||||
((limb) ((s32) in2[6])) * ((s32) in[5]) +
|
||||
((limb) ((s32) in2[4])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in2[7])) * ((s32) in[4]) +
|
||||
((limb) ((s32) in2[3])) * ((s32) in[8]) +
|
||||
((limb) ((s32) in2[8])) * ((s32) in[3]) +
|
||||
((limb) ((s32) in2[2])) * ((s32) in[9]) +
|
||||
((limb) ((s32) in2[9])) * ((s32) in[2]);
|
||||
output[12] = ((limb) ((s32) in2[6])) * ((s32) in[6]) +
|
||||
2 * (((limb) ((s32) in2[5])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in2[7])) * ((s32) in[5]) +
|
||||
((limb) ((s32) in2[3])) * ((s32) in[9]) +
|
||||
((limb) ((s32) in2[9])) * ((s32) in[3])) +
|
||||
((limb) ((s32) in2[4])) * ((s32) in[8]) +
|
||||
((limb) ((s32) in2[8])) * ((s32) in[4]);
|
||||
output[13] = ((limb) ((s32) in2[6])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in2[7])) * ((s32) in[6]) +
|
||||
((limb) ((s32) in2[5])) * ((s32) in[8]) +
|
||||
((limb) ((s32) in2[8])) * ((s32) in[5]) +
|
||||
((limb) ((s32) in2[4])) * ((s32) in[9]) +
|
||||
((limb) ((s32) in2[9])) * ((s32) in[4]);
|
||||
output[14] = 2 * (((limb) ((s32) in2[7])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in2[5])) * ((s32) in[9]) +
|
||||
((limb) ((s32) in2[9])) * ((s32) in[5])) +
|
||||
((limb) ((s32) in2[6])) * ((s32) in[8]) +
|
||||
((limb) ((s32) in2[8])) * ((s32) in[6]);
|
||||
output[15] = ((limb) ((s32) in2[7])) * ((s32) in[8]) +
|
||||
((limb) ((s32) in2[8])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in2[6])) * ((s32) in[9]) +
|
||||
((limb) ((s32) in2[9])) * ((s32) in[6]);
|
||||
output[16] = ((limb) ((s32) in2[8])) * ((s32) in[8]) +
|
||||
2 * (((limb) ((s32) in2[7])) * ((s32) in[9]) +
|
||||
((limb) ((s32) in2[9])) * ((s32) in[7]));
|
||||
output[17] = ((limb) ((s32) in2[8])) * ((s32) in[9]) +
|
||||
((limb) ((s32) in2[9])) * ((s32) in[8]);
|
||||
output[18] = 2 * ((limb) ((s32) in2[9])) * ((s32) in[9]);
|
||||
}
|
||||
|
||||
/* Reduce a long form to a short form by taking the input mod 2^255 - 19.
|
||||
*
|
||||
* On entry: |output[i]| < 14*2^54
|
||||
* On exit: |output[0..8]| < 280*2^54 */
|
||||
static void freduce_degree(limb *output) {
|
||||
/* Each of these shifts and adds ends up multiplying the value by 19.
|
||||
*
|
||||
* For output[0..8], the absolute entry value is < 14*2^54 and we add, at
|
||||
* most, 19*14*2^54 thus, on exit, |output[0..8]| < 280*2^54. */
|
||||
output[8] += output[18] << 4;
|
||||
output[8] += output[18] << 1;
|
||||
output[8] += output[18];
|
||||
output[7] += output[17] << 4;
|
||||
output[7] += output[17] << 1;
|
||||
output[7] += output[17];
|
||||
output[6] += output[16] << 4;
|
||||
output[6] += output[16] << 1;
|
||||
output[6] += output[16];
|
||||
output[5] += output[15] << 4;
|
||||
output[5] += output[15] << 1;
|
||||
output[5] += output[15];
|
||||
output[4] += output[14] << 4;
|
||||
output[4] += output[14] << 1;
|
||||
output[4] += output[14];
|
||||
output[3] += output[13] << 4;
|
||||
output[3] += output[13] << 1;
|
||||
output[3] += output[13];
|
||||
output[2] += output[12] << 4;
|
||||
output[2] += output[12] << 1;
|
||||
output[2] += output[12];
|
||||
output[1] += output[11] << 4;
|
||||
output[1] += output[11] << 1;
|
||||
output[1] += output[11];
|
||||
output[0] += output[10] << 4;
|
||||
output[0] += output[10] << 1;
|
||||
output[0] += output[10];
|
||||
}
|
||||
|
||||
#if (-1 & 3) != 3
|
||||
#error "This code only works on a two's complement system"
|
||||
#endif
|
||||
|
||||
/* return v / 2^26, using only shifts and adds.
|
||||
*
|
||||
* On entry: v can take any value. */
|
||||
static inline limb
|
||||
div_by_2_26(const limb v)
|
||||
{
|
||||
/* High word of v; no shift needed. */
|
||||
const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32);
|
||||
/* Set to all 1s if v was negative; else set to 0s. */
|
||||
const int32_t sign = ((int32_t) highword) >> 31;
|
||||
/* Set to 0x3ffffff if v was negative; else set to 0. */
|
||||
const int32_t roundoff = ((uint32_t) sign) >> 6;
|
||||
/* Should return v / (1<<26) */
|
||||
return (v + roundoff) >> 26;
|
||||
}
|
||||
|
||||
/* return v / (2^25), using only shifts and adds.
|
||||
*
|
||||
* On entry: v can take any value. */
|
||||
static inline limb
|
||||
div_by_2_25(const limb v)
|
||||
{
|
||||
/* High word of v; no shift needed*/
|
||||
const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32);
|
||||
/* Set to all 1s if v was negative; else set to 0s. */
|
||||
const int32_t sign = ((int32_t) highword) >> 31;
|
||||
/* Set to 0x1ffffff if v was negative; else set to 0. */
|
||||
const int32_t roundoff = ((uint32_t) sign) >> 7;
|
||||
/* Should return v / (1<<25) */
|
||||
return (v + roundoff) >> 25;
|
||||
}
|
||||
|
||||
/* Reduce all coefficients of the short form input so that |x| < 2^26.
|
||||
*
|
||||
* On entry: |output[i]| < 280*2^54 */
|
||||
static void freduce_coefficients(limb *output) {
|
||||
unsigned i;
|
||||
|
||||
output[10] = 0;
|
||||
|
||||
for (i = 0; i < 10; i += 2) {
|
||||
limb over = div_by_2_26(output[i]);
|
||||
/* The entry condition (that |output[i]| < 280*2^54) means that over is, at
|
||||
* most, 280*2^28 in the first iteration of this loop. This is added to the
|
||||
* next limb and we can approximate the resulting bound of that limb by
|
||||
* 281*2^54. */
|
||||
output[i] -= over << 26;
|
||||
output[i+1] += over;
|
||||
|
||||
/* For the first iteration, |output[i+1]| < 281*2^54, thus |over| <
|
||||
* 281*2^29. When this is added to the next limb, the resulting bound can
|
||||
* be approximated as 281*2^54.
|
||||
*
|
||||
* For subsequent iterations of the loop, 281*2^54 remains a conservative
|
||||
* bound and no overflow occurs. */
|
||||
over = div_by_2_25(output[i+1]);
|
||||
output[i+1] -= over << 25;
|
||||
output[i+2] += over;
|
||||
}
|
||||
/* Now |output[10]| < 281*2^29 and all other coefficients are reduced. */
|
||||
output[0] += output[10] << 4;
|
||||
output[0] += output[10] << 1;
|
||||
output[0] += output[10];
|
||||
|
||||
output[10] = 0;
|
||||
|
||||
/* Now output[1..9] are reduced, and |output[0]| < 2^26 + 19*281*2^29
|
||||
* So |over| will be no more than 2^16. */
|
||||
{
|
||||
limb over = div_by_2_26(output[0]);
|
||||
output[0] -= over << 26;
|
||||
output[1] += over;
|
||||
}
|
||||
|
||||
/* Now output[0,2..9] are reduced, and |output[1]| < 2^25 + 2^16 < 2^26. The
|
||||
* bound on |output[1]| is sufficient to meet our needs. */
|
||||
}
|
||||
|
||||
/* A helpful wrapper around fproduct: output = in * in2.
|
||||
*
|
||||
* On entry: |in[i]| < 2^27 and |in2[i]| < 2^27.
|
||||
*
|
||||
* output must be distinct to both inputs. The output is reduced degree
|
||||
* (indeed, one need only provide storage for 10 limbs) and |output[i]| < 2^26. */
|
||||
static void
|
||||
fmul(limb *output, const limb *in, const limb *in2) {
|
||||
limb t[19];
|
||||
fproduct(t, in, in2);
|
||||
/* |t[i]| < 14*2^54 */
|
||||
freduce_degree(t);
|
||||
freduce_coefficients(t);
|
||||
/* |t[i]| < 2^26 */
|
||||
memcpy(output, t, sizeof(limb) * 10);
|
||||
}
|
||||
|
||||
/* Square a number: output = in**2
|
||||
*
|
||||
* output must be distinct from the input. The inputs are reduced coefficient
|
||||
* form, the output is not.
|
||||
*
|
||||
* output[x] <= 14 * the largest product of the input limbs. */
|
||||
static void fsquare_inner(limb *output, const limb *in) {
|
||||
output[0] = ((limb) ((s32) in[0])) * ((s32) in[0]);
|
||||
output[1] = 2 * ((limb) ((s32) in[0])) * ((s32) in[1]);
|
||||
output[2] = 2 * (((limb) ((s32) in[1])) * ((s32) in[1]) +
|
||||
((limb) ((s32) in[0])) * ((s32) in[2]));
|
||||
output[3] = 2 * (((limb) ((s32) in[1])) * ((s32) in[2]) +
|
||||
((limb) ((s32) in[0])) * ((s32) in[3]));
|
||||
output[4] = ((limb) ((s32) in[2])) * ((s32) in[2]) +
|
||||
4 * ((limb) ((s32) in[1])) * ((s32) in[3]) +
|
||||
2 * ((limb) ((s32) in[0])) * ((s32) in[4]);
|
||||
output[5] = 2 * (((limb) ((s32) in[2])) * ((s32) in[3]) +
|
||||
((limb) ((s32) in[1])) * ((s32) in[4]) +
|
||||
((limb) ((s32) in[0])) * ((s32) in[5]));
|
||||
output[6] = 2 * (((limb) ((s32) in[3])) * ((s32) in[3]) +
|
||||
((limb) ((s32) in[2])) * ((s32) in[4]) +
|
||||
((limb) ((s32) in[0])) * ((s32) in[6]) +
|
||||
2 * ((limb) ((s32) in[1])) * ((s32) in[5]));
|
||||
output[7] = 2 * (((limb) ((s32) in[3])) * ((s32) in[4]) +
|
||||
((limb) ((s32) in[2])) * ((s32) in[5]) +
|
||||
((limb) ((s32) in[1])) * ((s32) in[6]) +
|
||||
((limb) ((s32) in[0])) * ((s32) in[7]));
|
||||
output[8] = ((limb) ((s32) in[4])) * ((s32) in[4]) +
|
||||
2 * (((limb) ((s32) in[2])) * ((s32) in[6]) +
|
||||
((limb) ((s32) in[0])) * ((s32) in[8]) +
|
||||
2 * (((limb) ((s32) in[1])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in[3])) * ((s32) in[5])));
|
||||
output[9] = 2 * (((limb) ((s32) in[4])) * ((s32) in[5]) +
|
||||
((limb) ((s32) in[3])) * ((s32) in[6]) +
|
||||
((limb) ((s32) in[2])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in[1])) * ((s32) in[8]) +
|
||||
((limb) ((s32) in[0])) * ((s32) in[9]));
|
||||
output[10] = 2 * (((limb) ((s32) in[5])) * ((s32) in[5]) +
|
||||
((limb) ((s32) in[4])) * ((s32) in[6]) +
|
||||
((limb) ((s32) in[2])) * ((s32) in[8]) +
|
||||
2 * (((limb) ((s32) in[3])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in[1])) * ((s32) in[9])));
|
||||
output[11] = 2 * (((limb) ((s32) in[5])) * ((s32) in[6]) +
|
||||
((limb) ((s32) in[4])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in[3])) * ((s32) in[8]) +
|
||||
((limb) ((s32) in[2])) * ((s32) in[9]));
|
||||
output[12] = ((limb) ((s32) in[6])) * ((s32) in[6]) +
|
||||
2 * (((limb) ((s32) in[4])) * ((s32) in[8]) +
|
||||
2 * (((limb) ((s32) in[5])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in[3])) * ((s32) in[9])));
|
||||
output[13] = 2 * (((limb) ((s32) in[6])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in[5])) * ((s32) in[8]) +
|
||||
((limb) ((s32) in[4])) * ((s32) in[9]));
|
||||
output[14] = 2 * (((limb) ((s32) in[7])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in[6])) * ((s32) in[8]) +
|
||||
2 * ((limb) ((s32) in[5])) * ((s32) in[9]));
|
||||
output[15] = 2 * (((limb) ((s32) in[7])) * ((s32) in[8]) +
|
||||
((limb) ((s32) in[6])) * ((s32) in[9]));
|
||||
output[16] = ((limb) ((s32) in[8])) * ((s32) in[8]) +
|
||||
4 * ((limb) ((s32) in[7])) * ((s32) in[9]);
|
||||
output[17] = 2 * ((limb) ((s32) in[8])) * ((s32) in[9]);
|
||||
output[18] = 2 * ((limb) ((s32) in[9])) * ((s32) in[9]);
|
||||
}
|
||||
|
||||
/* fsquare sets output = in^2.
|
||||
*
|
||||
* On entry: The |in| argument is in reduced coefficients form and |in[i]| <
|
||||
* 2^27.
|
||||
*
|
||||
* On exit: The |output| argument is in reduced coefficients form (indeed, one
|
||||
* need only provide storage for 10 limbs) and |out[i]| < 2^26. */
|
||||
static void
|
||||
fsquare(limb *output, const limb *in) {
|
||||
limb t[19];
|
||||
fsquare_inner(t, in);
|
||||
/* |t[i]| < 14*2^54 because the largest product of two limbs will be <
|
||||
* 2^(27+27) and fsquare_inner adds together, at most, 14 of those
|
||||
* products. */
|
||||
freduce_degree(t);
|
||||
freduce_coefficients(t);
|
||||
/* |t[i]| < 2^26 */
|
||||
memcpy(output, t, sizeof(limb) * 10);
|
||||
}
|
||||
|
||||
/* Take a little-endian, 32-byte number and expand it into polynomial form */
|
||||
static void
|
||||
fexpand(limb *output, const u8 *input) {
|
||||
#define F(n,start,shift,mask) \
|
||||
output[n] = ((((limb) input[start + 0]) | \
|
||||
((limb) input[start + 1]) << 8 | \
|
||||
((limb) input[start + 2]) << 16 | \
|
||||
((limb) input[start + 3]) << 24) >> shift) & mask;
|
||||
F(0, 0, 0, 0x3ffffff);
|
||||
F(1, 3, 2, 0x1ffffff);
|
||||
F(2, 6, 3, 0x3ffffff);
|
||||
F(3, 9, 5, 0x1ffffff);
|
||||
F(4, 12, 6, 0x3ffffff);
|
||||
F(5, 16, 0, 0x1ffffff);
|
||||
F(6, 19, 1, 0x3ffffff);
|
||||
F(7, 22, 3, 0x1ffffff);
|
||||
F(8, 25, 4, 0x3ffffff);
|
||||
F(9, 28, 6, 0x1ffffff);
|
||||
#undef F
|
||||
}
|
||||
|
||||
#if (-32 >> 1) != -16
|
||||
#error "This code only works when >> does sign-extension on negative numbers"
|
||||
#endif
|
||||
|
||||
/* s32_eq returns 0xffffffff iff a == b and zero otherwise. */
|
||||
static s32 s32_eq(s32 a, s32 b) {
|
||||
a = ~(a ^ b);
|
||||
a &= a << 16;
|
||||
a &= a << 8;
|
||||
a &= a << 4;
|
||||
a &= a << 2;
|
||||
a &= a << 1;
|
||||
return a >> 31;
|
||||
}
|
||||
|
||||
/* s32_gte returns 0xffffffff if a >= b and zero otherwise, where a and b are
|
||||
* both non-negative. */
|
||||
static s32 s32_gte(s32 a, s32 b) {
|
||||
a -= b;
|
||||
/* a >= 0 iff a >= b. */
|
||||
return ~(a >> 31);
|
||||
}
|
||||
|
||||
/* Take a fully reduced polynomial form number and contract it into a
|
||||
* little-endian, 32-byte array.
|
||||
*
|
||||
* On entry: |input_limbs[i]| < 2^26 */
|
||||
static void
|
||||
fcontract(u8 *output, limb *input_limbs) {
|
||||
int i;
|
||||
int j;
|
||||
s32 input[10];
|
||||
s32 mask;
|
||||
|
||||
/* |input_limbs[i]| < 2^26, so it's valid to convert to an s32. */
|
||||
for (i = 0; i < 10; i++) {
|
||||
input[i] = input_limbs[i];
|
||||
}
|
||||
|
||||
for (j = 0; j < 2; ++j) {
|
||||
for (i = 0; i < 9; ++i) {
|
||||
if ((i & 1) == 1) {
|
||||
/* This calculation is a time-invariant way to make input[i]
|
||||
* non-negative by borrowing from the next-larger limb. */
|
||||
const s32 mask = input[i] >> 31;
|
||||
const s32 carry = -((input[i] & mask) >> 25);
|
||||
input[i] = input[i] + (carry << 25);
|
||||
input[i+1] = input[i+1] - carry;
|
||||
} else {
|
||||
const s32 mask = input[i] >> 31;
|
||||
const s32 carry = -((input[i] & mask) >> 26);
|
||||
input[i] = input[i] + (carry << 26);
|
||||
input[i+1] = input[i+1] - carry;
|
||||
}
|
||||
}
|
||||
|
||||
/* There's no greater limb for input[9] to borrow from, but we can multiply
|
||||
* by 19 and borrow from input[0], which is valid mod 2^255-19. */
|
||||
{
|
||||
const s32 mask = input[9] >> 31;
|
||||
const s32 carry = -((input[9] & mask) >> 25);
|
||||
input[9] = input[9] + (carry << 25);
|
||||
input[0] = input[0] - (carry * 19);
|
||||
}
|
||||
|
||||
/* After the first iteration, input[1..9] are non-negative and fit within
|
||||
* 25 or 26 bits, depending on position. However, input[0] may be
|
||||
* negative. */
|
||||
}
|
||||
|
||||
/* The first borrow-propagation pass above ended with every limb
|
||||
except (possibly) input[0] non-negative.
|
||||
|
||||
If input[0] was negative after the first pass, then it was because of a
|
||||
carry from input[9]. On entry, input[9] < 2^26 so the carry was, at most,
|
||||
one, since (2**26-1) >> 25 = 1. Thus input[0] >= -19.
|
||||
|
||||
In the second pass, each limb is decreased by at most one. Thus the second
|
||||
borrow-propagation pass could only have wrapped around to decrease
|
||||
input[0] again if the first pass left input[0] negative *and* input[1]
|
||||
through input[9] were all zero. In that case, input[1] is now 2^25 - 1,
|
||||
and this last borrow-propagation step will leave input[1] non-negative. */
|
||||
{
|
||||
const s32 mask = input[0] >> 31;
|
||||
const s32 carry = -((input[0] & mask) >> 26);
|
||||
input[0] = input[0] + (carry << 26);
|
||||
input[1] = input[1] - carry;
|
||||
}
|
||||
|
||||
/* All input[i] are now non-negative. However, there might be values between
|
||||
* 2^25 and 2^26 in a limb which is, nominally, 25 bits wide. */
|
||||
for (j = 0; j < 2; j++) {
|
||||
for (i = 0; i < 9; i++) {
|
||||
if ((i & 1) == 1) {
|
||||
const s32 carry = input[i] >> 25;
|
||||
input[i] &= 0x1ffffff;
|
||||
input[i+1] += carry;
|
||||
} else {
|
||||
const s32 carry = input[i] >> 26;
|
||||
input[i] &= 0x3ffffff;
|
||||
input[i+1] += carry;
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
const s32 carry = input[9] >> 25;
|
||||
input[9] &= 0x1ffffff;
|
||||
input[0] += 19*carry;
|
||||
}
|
||||
}
|
||||
|
||||
/* If the first carry-chain pass, just above, ended up with a carry from
|
||||
* input[9], and that caused input[0] to be out-of-bounds, then input[0] was
|
||||
* < 2^26 + 2*19, because the carry was, at most, two.
|
||||
*
|
||||
* If the second pass carried from input[9] again then input[0] is < 2*19 and
|
||||
* the input[9] -> input[0] carry didn't push input[0] out of bounds. */
|
||||
|
||||
/* It still remains the case that input might be between 2^255-19 and 2^255.
|
||||
* In this case, input[1..9] must take their maximum value and input[0] must
|
||||
* be >= (2^255-19) & 0x3ffffff, which is 0x3ffffed. */
|
||||
mask = s32_gte(input[0], 0x3ffffed);
|
||||
for (i = 1; i < 10; i++) {
|
||||
if ((i & 1) == 1) {
|
||||
mask &= s32_eq(input[i], 0x1ffffff);
|
||||
} else {
|
||||
mask &= s32_eq(input[i], 0x3ffffff);
|
||||
}
|
||||
}
|
||||
|
||||
/* mask is either 0xffffffff (if input >= 2^255-19) and zero otherwise. Thus
|
||||
* this conditionally subtracts 2^255-19. */
|
||||
input[0] -= mask & 0x3ffffed;
|
||||
|
||||
for (i = 1; i < 10; i++) {
|
||||
if ((i & 1) == 1) {
|
||||
input[i] -= mask & 0x1ffffff;
|
||||
} else {
|
||||
input[i] -= mask & 0x3ffffff;
|
||||
}
|
||||
}
|
||||
|
||||
input[1] <<= 2;
|
||||
input[2] <<= 3;
|
||||
input[3] <<= 5;
|
||||
input[4] <<= 6;
|
||||
input[6] <<= 1;
|
||||
input[7] <<= 3;
|
||||
input[8] <<= 4;
|
||||
input[9] <<= 6;
|
||||
#define F(i, s) \
|
||||
output[s+0] |= input[i] & 0xff; \
|
||||
output[s+1] = (input[i] >> 8) & 0xff; \
|
||||
output[s+2] = (input[i] >> 16) & 0xff; \
|
||||
output[s+3] = (input[i] >> 24) & 0xff;
|
||||
output[0] = 0;
|
||||
output[16] = 0;
|
||||
F(0,0);
|
||||
F(1,3);
|
||||
F(2,6);
|
||||
F(3,9);
|
||||
F(4,12);
|
||||
F(5,16);
|
||||
F(6,19);
|
||||
F(7,22);
|
||||
F(8,25);
|
||||
F(9,28);
|
||||
#undef F
|
||||
}
|
||||
|
||||
/* Input: Q, Q', Q-Q'
|
||||
* Output: 2Q, Q+Q'
|
||||
*
|
||||
* x2 z3: long form
|
||||
* x3 z3: long form
|
||||
* x z: short form, destroyed
|
||||
* xprime zprime: short form, destroyed
|
||||
* qmqp: short form, preserved
|
||||
*
|
||||
* On entry and exit, the absolute value of the limbs of all inputs and outputs
|
||||
* are < 2^26. */
|
||||
static void fmonty(limb *x2, limb *z2, /* output 2Q */
|
||||
limb *x3, limb *z3, /* output Q + Q' */
|
||||
limb *x, limb *z, /* input Q */
|
||||
limb *xprime, limb *zprime, /* input Q' */
|
||||
const limb *qmqp /* input Q - Q' */) {
|
||||
limb origx[10], origxprime[10], zzz[19], xx[19], zz[19], xxprime[19],
|
||||
zzprime[19], zzzprime[19], xxxprime[19];
|
||||
|
||||
memcpy(origx, x, 10 * sizeof(limb));
|
||||
fsum(x, z);
|
||||
/* |x[i]| < 2^27 */
|
||||
fdifference(z, origx); /* does x - z */
|
||||
/* |z[i]| < 2^27 */
|
||||
|
||||
memcpy(origxprime, xprime, sizeof(limb) * 10);
|
||||
fsum(xprime, zprime);
|
||||
/* |xprime[i]| < 2^27 */
|
||||
fdifference(zprime, origxprime);
|
||||
/* |zprime[i]| < 2^27 */
|
||||
fproduct(xxprime, xprime, z);
|
||||
/* |xxprime[i]| < 14*2^54: the largest product of two limbs will be <
|
||||
* 2^(27+27) and fproduct adds together, at most, 14 of those products.
|
||||
* (Approximating that to 2^58 doesn't work out.) */
|
||||
fproduct(zzprime, x, zprime);
|
||||
/* |zzprime[i]| < 14*2^54 */
|
||||
freduce_degree(xxprime);
|
||||
freduce_coefficients(xxprime);
|
||||
/* |xxprime[i]| < 2^26 */
|
||||
freduce_degree(zzprime);
|
||||
freduce_coefficients(zzprime);
|
||||
/* |zzprime[i]| < 2^26 */
|
||||
memcpy(origxprime, xxprime, sizeof(limb) * 10);
|
||||
fsum(xxprime, zzprime);
|
||||
/* |xxprime[i]| < 2^27 */
|
||||
fdifference(zzprime, origxprime);
|
||||
/* |zzprime[i]| < 2^27 */
|
||||
fsquare(xxxprime, xxprime);
|
||||
/* |xxxprime[i]| < 2^26 */
|
||||
fsquare(zzzprime, zzprime);
|
||||
/* |zzzprime[i]| < 2^26 */
|
||||
fproduct(zzprime, zzzprime, qmqp);
|
||||
/* |zzprime[i]| < 14*2^52 */
|
||||
freduce_degree(zzprime);
|
||||
freduce_coefficients(zzprime);
|
||||
/* |zzprime[i]| < 2^26 */
|
||||
memcpy(x3, xxxprime, sizeof(limb) * 10);
|
||||
memcpy(z3, zzprime, sizeof(limb) * 10);
|
||||
|
||||
fsquare(xx, x);
|
||||
/* |xx[i]| < 2^26 */
|
||||
fsquare(zz, z);
|
||||
/* |zz[i]| < 2^26 */
|
||||
fproduct(x2, xx, zz);
|
||||
/* |x2[i]| < 14*2^52 */
|
||||
freduce_degree(x2);
|
||||
freduce_coefficients(x2);
|
||||
/* |x2[i]| < 2^26 */
|
||||
fdifference(zz, xx); // does zz = xx - zz
|
||||
/* |zz[i]| < 2^27 */
|
||||
memset(zzz + 10, 0, sizeof(limb) * 9);
|
||||
fscalar_product(zzz, zz, 121665);
|
||||
/* |zzz[i]| < 2^(27+17) */
|
||||
/* No need to call freduce_degree here:
|
||||
fscalar_product doesn't increase the degree of its input. */
|
||||
freduce_coefficients(zzz);
|
||||
/* |zzz[i]| < 2^26 */
|
||||
fsum(zzz, xx);
|
||||
/* |zzz[i]| < 2^27 */
|
||||
fproduct(z2, zz, zzz);
|
||||
/* |z2[i]| < 14*2^(26+27) */
|
||||
freduce_degree(z2);
|
||||
freduce_coefficients(z2);
|
||||
/* |z2|i| < 2^26 */
|
||||
}
|
||||
|
||||
/* Conditionally swap two reduced-form limb arrays if 'iswap' is 1, but leave
|
||||
* them unchanged if 'iswap' is 0. Runs in data-invariant time to avoid
|
||||
* side-channel attacks.
|
||||
*
|
||||
* NOTE that this function requires that 'iswap' be 1 or 0; other values give
|
||||
* wrong results. Also, the two limb arrays must be in reduced-coefficient,
|
||||
* reduced-degree form: the values in a[10..19] or b[10..19] aren't swapped,
|
||||
* and all all values in a[0..9],b[0..9] must have magnitude less than
|
||||
* INT32_MAX. */
|
||||
static void
|
||||
swap_conditional(limb a[19], limb b[19], limb iswap) {
|
||||
unsigned i;
|
||||
const s32 swap = (s32) -iswap;
|
||||
|
||||
for (i = 0; i < 10; ++i) {
|
||||
const s32 x = swap & ( ((s32)a[i]) ^ ((s32)b[i]) );
|
||||
a[i] = ((s32)a[i]) ^ x;
|
||||
b[i] = ((s32)b[i]) ^ x;
|
||||
}
|
||||
}
|
||||
|
||||
/* Calculates nQ where Q is the x-coordinate of a point on the curve
|
||||
*
|
||||
* resultx/resultz: the x coordinate of the resulting curve point (short form)
|
||||
* n: a little endian, 32-byte number
|
||||
* q: a point of the curve (short form) */
|
||||
static void
|
||||
cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) {
|
||||
limb a[19] = {0}, b[19] = {1}, c[19] = {1}, d[19] = {0};
|
||||
limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t;
|
||||
limb e[19] = {0}, f[19] = {1}, g[19] = {0}, h[19] = {1};
|
||||
limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h;
|
||||
|
||||
unsigned i, j;
|
||||
|
||||
memcpy(nqpqx, q, sizeof(limb) * 10);
|
||||
|
||||
for (i = 0; i < 32; ++i) {
|
||||
u8 byte = n[31 - i];
|
||||
for (j = 0; j < 8; ++j) {
|
||||
const limb bit = byte >> 7;
|
||||
|
||||
swap_conditional(nqx, nqpqx, bit);
|
||||
swap_conditional(nqz, nqpqz, bit);
|
||||
fmonty(nqx2, nqz2,
|
||||
nqpqx2, nqpqz2,
|
||||
nqx, nqz,
|
||||
nqpqx, nqpqz,
|
||||
q);
|
||||
swap_conditional(nqx2, nqpqx2, bit);
|
||||
swap_conditional(nqz2, nqpqz2, bit);
|
||||
|
||||
t = nqx;
|
||||
nqx = nqx2;
|
||||
nqx2 = t;
|
||||
t = nqz;
|
||||
nqz = nqz2;
|
||||
nqz2 = t;
|
||||
t = nqpqx;
|
||||
nqpqx = nqpqx2;
|
||||
nqpqx2 = t;
|
||||
t = nqpqz;
|
||||
nqpqz = nqpqz2;
|
||||
nqpqz2 = t;
|
||||
|
||||
byte <<= 1;
|
||||
}
|
||||
}
|
||||
|
||||
memcpy(resultx, nqx, sizeof(limb) * 10);
|
||||
memcpy(resultz, nqz, sizeof(limb) * 10);
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Shamelessly copied from djb's code
|
||||
// -----------------------------------------------------------------------------
|
||||
static void
|
||||
crecip(limb *out, const limb *z) {
|
||||
limb z2[10];
|
||||
limb z9[10];
|
||||
limb z11[10];
|
||||
limb z2_5_0[10];
|
||||
limb z2_10_0[10];
|
||||
limb z2_20_0[10];
|
||||
limb z2_50_0[10];
|
||||
limb z2_100_0[10];
|
||||
limb t0[10];
|
||||
limb t1[10];
|
||||
int i;
|
||||
|
||||
/* 2 */ fsquare(z2,z);
|
||||
/* 4 */ fsquare(t1,z2);
|
||||
/* 8 */ fsquare(t0,t1);
|
||||
/* 9 */ fmul(z9,t0,z);
|
||||
/* 11 */ fmul(z11,z9,z2);
|
||||
/* 22 */ fsquare(t0,z11);
|
||||
/* 2^5 - 2^0 = 31 */ fmul(z2_5_0,t0,z9);
|
||||
|
||||
/* 2^6 - 2^1 */ fsquare(t0,z2_5_0);
|
||||
/* 2^7 - 2^2 */ fsquare(t1,t0);
|
||||
/* 2^8 - 2^3 */ fsquare(t0,t1);
|
||||
/* 2^9 - 2^4 */ fsquare(t1,t0);
|
||||
/* 2^10 - 2^5 */ fsquare(t0,t1);
|
||||
/* 2^10 - 2^0 */ fmul(z2_10_0,t0,z2_5_0);
|
||||
|
||||
/* 2^11 - 2^1 */ fsquare(t0,z2_10_0);
|
||||
/* 2^12 - 2^2 */ fsquare(t1,t0);
|
||||
/* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
|
||||
/* 2^20 - 2^0 */ fmul(z2_20_0,t1,z2_10_0);
|
||||
|
||||
/* 2^21 - 2^1 */ fsquare(t0,z2_20_0);
|
||||
/* 2^22 - 2^2 */ fsquare(t1,t0);
|
||||
/* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
|
||||
/* 2^40 - 2^0 */ fmul(t0,t1,z2_20_0);
|
||||
|
||||
/* 2^41 - 2^1 */ fsquare(t1,t0);
|
||||
/* 2^42 - 2^2 */ fsquare(t0,t1);
|
||||
/* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t1,t0); fsquare(t0,t1); }
|
||||
/* 2^50 - 2^0 */ fmul(z2_50_0,t0,z2_10_0);
|
||||
|
||||
/* 2^51 - 2^1 */ fsquare(t0,z2_50_0);
|
||||
/* 2^52 - 2^2 */ fsquare(t1,t0);
|
||||
/* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
|
||||
/* 2^100 - 2^0 */ fmul(z2_100_0,t1,z2_50_0);
|
||||
|
||||
/* 2^101 - 2^1 */ fsquare(t1,z2_100_0);
|
||||
/* 2^102 - 2^2 */ fsquare(t0,t1);
|
||||
/* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fsquare(t1,t0); fsquare(t0,t1); }
|
||||
/* 2^200 - 2^0 */ fmul(t1,t0,z2_100_0);
|
||||
|
||||
/* 2^201 - 2^1 */ fsquare(t0,t1);
|
||||
/* 2^202 - 2^2 */ fsquare(t1,t0);
|
||||
/* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
|
||||
/* 2^250 - 2^0 */ fmul(t0,t1,z2_50_0);
|
||||
|
||||
/* 2^251 - 2^1 */ fsquare(t1,t0);
|
||||
/* 2^252 - 2^2 */ fsquare(t0,t1);
|
||||
/* 2^253 - 2^3 */ fsquare(t1,t0);
|
||||
/* 2^254 - 2^4 */ fsquare(t0,t1);
|
||||
/* 2^255 - 2^5 */ fsquare(t1,t0);
|
||||
/* 2^255 - 21 */ fmul(out,t1,z11);
|
||||
}
|
||||
|
||||
int
|
||||
curve25519_donna(u8 *mypublic, const u8 *secret, const u8 *basepoint) {
|
||||
limb bp[10], x[10], z[11], zmone[10];
|
||||
uint8_t e[32];
|
||||
int i;
|
||||
|
||||
for (i = 0; i < 32; ++i) e[i] = secret[i];
|
||||
e[0] &= 248;
|
||||
e[31] &= 127;
|
||||
e[31] |= 64;
|
||||
|
||||
fexpand(bp, basepoint);
|
||||
cmult(x, z, e, bp);
|
||||
crecip(zmone, z);
|
||||
fmul(z, x, zmone);
|
||||
fcontract(mypublic, z);
|
||||
return 0;
|
||||
}
|
13
curve25519-donna.podspec
Normal file
13
curve25519-donna.podspec
Normal file
|
@ -0,0 +1,13 @@
|
|||
Pod::Spec.new do |s|
|
||||
s.name = "curve25519-donna"
|
||||
s.version = "1.2.1"
|
||||
s.summary = "Implementations of a fast elliptic-curve, Diffie-Hellman primitive"
|
||||
s.description = <<-DESC
|
||||
Curve25519 is a state-of-the-art Diffie-Hellman function suitable for a wide variety of applications.
|
||||
DESC
|
||||
s.homepage = "http://code.google.com/p/curve25519-donna"
|
||||
s.license = 'BSD 3-Clause'
|
||||
s.author = 'Dan Bernstein'
|
||||
s.source = { :git => "https://github.com/agl/curve25519-donna.git", :tag => "1.2.1" }
|
||||
s.source_files = 'curve25519-donna.c'
|
||||
end
|
4
python-src/curve25519/__init__.py
Normal file
4
python-src/curve25519/__init__.py
Normal file
|
@ -0,0 +1,4 @@
|
|||
|
||||
from .keys import Private, Public
|
||||
|
||||
hush_pyflakes = [Private, Public]; del hush_pyflakes
|
105
python-src/curve25519/curve25519module.c
Normal file
105
python-src/curve25519/curve25519module.c
Normal file
|
@ -0,0 +1,105 @@
|
|||
/* tell python that PyArg_ParseTuple(t#) means Py_ssize_t, not int */
|
||||
#define PY_SSIZE_T_CLEAN
|
||||
#include <Python.h>
|
||||
#if (PY_VERSION_HEX < 0x02050000)
|
||||
typedef int Py_ssize_t;
|
||||
#endif
|
||||
|
||||
/* This is required for compatibility with Python 2. */
|
||||
#if PY_MAJOR_VERSION >= 3
|
||||
#include <bytesobject.h>
|
||||
#define y "y"
|
||||
#else
|
||||
#define PyBytes_FromStringAndSize PyString_FromStringAndSize
|
||||
#define y "t"
|
||||
#endif
|
||||
|
||||
int curve25519_donna(char *mypublic,
|
||||
const char *secret, const char *basepoint);
|
||||
|
||||
static PyObject *
|
||||
pycurve25519_makeprivate(PyObject *self, PyObject *args)
|
||||
{
|
||||
char *in1;
|
||||
Py_ssize_t in1len;
|
||||
if (!PyArg_ParseTuple(args, y"#:clamp", &in1, &in1len))
|
||||
return NULL;
|
||||
if (in1len != 32) {
|
||||
PyErr_SetString(PyExc_ValueError, "input must be 32-byte string");
|
||||
return NULL;
|
||||
}
|
||||
in1[0] &= 248;
|
||||
in1[31] &= 127;
|
||||
in1[31] |= 64;
|
||||
return PyBytes_FromStringAndSize((char *)in1, 32);
|
||||
}
|
||||
|
||||
static PyObject *
|
||||
pycurve25519_makepublic(PyObject *self, PyObject *args)
|
||||
{
|
||||
const char *private;
|
||||
char mypublic[32];
|
||||
char basepoint[32] = {9};
|
||||
Py_ssize_t privatelen;
|
||||
if (!PyArg_ParseTuple(args, y"#:makepublic", &private, &privatelen))
|
||||
return NULL;
|
||||
if (privatelen != 32) {
|
||||
PyErr_SetString(PyExc_ValueError, "input must be 32-byte string");
|
||||
return NULL;
|
||||
}
|
||||
curve25519_donna(mypublic, private, basepoint);
|
||||
return PyBytes_FromStringAndSize((char *)mypublic, 32);
|
||||
}
|
||||
|
||||
static PyObject *
|
||||
pycurve25519_makeshared(PyObject *self, PyObject *args)
|
||||
{
|
||||
const char *myprivate, *theirpublic;
|
||||
char shared_key[32];
|
||||
Py_ssize_t myprivatelen, theirpubliclen;
|
||||
if (!PyArg_ParseTuple(args, y"#"y"#:generate",
|
||||
&myprivate, &myprivatelen, &theirpublic, &theirpubliclen))
|
||||
return NULL;
|
||||
if (myprivatelen != 32) {
|
||||
PyErr_SetString(PyExc_ValueError, "input must be 32-byte string");
|
||||
return NULL;
|
||||
}
|
||||
if (theirpubliclen != 32) {
|
||||
PyErr_SetString(PyExc_ValueError, "input must be 32-byte string");
|
||||
return NULL;
|
||||
}
|
||||
curve25519_donna(shared_key, myprivate, theirpublic);
|
||||
return PyBytes_FromStringAndSize((char *)shared_key, 32);
|
||||
}
|
||||
|
||||
|
||||
static PyMethodDef
|
||||
curve25519_functions[] = {
|
||||
{"make_private", pycurve25519_makeprivate, METH_VARARGS, "data->private"},
|
||||
{"make_public", pycurve25519_makepublic, METH_VARARGS, "private->public"},
|
||||
{"make_shared", pycurve25519_makeshared, METH_VARARGS, "private+public->shared"},
|
||||
{NULL, NULL, 0, NULL},
|
||||
};
|
||||
|
||||
#if PY_MAJOR_VERSION >= 3
|
||||
static struct PyModuleDef
|
||||
curve25519_module = {
|
||||
PyModuleDef_HEAD_INIT,
|
||||
"_curve25519",
|
||||
NULL,
|
||||
NULL,
|
||||
curve25519_functions,
|
||||
};
|
||||
|
||||
PyObject *
|
||||
PyInit__curve25519(void)
|
||||
{
|
||||
return PyModule_Create(&curve25519_module);
|
||||
}
|
||||
#else
|
||||
PyMODINIT_FUNC
|
||||
init_curve25519(void)
|
||||
{
|
||||
(void)Py_InitModule("_curve25519", curve25519_functions);
|
||||
}
|
||||
#endif
|
46
python-src/curve25519/keys.py
Normal file
46
python-src/curve25519/keys.py
Normal file
|
@ -0,0 +1,46 @@
|
|||
from . import _curve25519
|
||||
from hashlib import sha256
|
||||
import os
|
||||
|
||||
# the curve25519 functions are really simple, and could be used without an
|
||||
# OOP layer, but it's a bit too easy to accidentally swap the private and
|
||||
# public keys that way.
|
||||
|
||||
def _hash_shared(shared):
|
||||
return sha256(b"curve25519-shared:"+shared).digest()
|
||||
|
||||
class Private:
|
||||
def __init__(self, secret=None, seed=None):
|
||||
if secret is None:
|
||||
if seed is None:
|
||||
secret = os.urandom(32)
|
||||
else:
|
||||
secret = sha256(b"curve25519-private:"+seed).digest()
|
||||
else:
|
||||
assert seed is None, "provide secret, seed, or neither, not both"
|
||||
if not isinstance(secret, bytes) or len(secret) != 32:
|
||||
raise TypeError("secret= must be 32-byte string")
|
||||
self.private = _curve25519.make_private(secret)
|
||||
|
||||
def serialize(self):
|
||||
return self.private
|
||||
|
||||
def get_public(self):
|
||||
return Public(_curve25519.make_public(self.private))
|
||||
|
||||
def get_shared_key(self, public, hashfunc=None):
|
||||
if not isinstance(public, Public):
|
||||
raise ValueError("'public' must be an instance of Public")
|
||||
if hashfunc is None:
|
||||
hashfunc = _hash_shared
|
||||
shared = _curve25519.make_shared(self.private, public.public)
|
||||
return hashfunc(shared)
|
||||
|
||||
class Public:
|
||||
def __init__(self, public):
|
||||
assert isinstance(public, bytes)
|
||||
assert len(public) == 32
|
||||
self.public = public
|
||||
|
||||
def serialize(self):
|
||||
return self.public
|
0
python-src/curve25519/test/__init__.py
Normal file
0
python-src/curve25519/test/__init__.py
Normal file
99
python-src/curve25519/test/test_curve25519.py
Executable file
99
python-src/curve25519/test/test_curve25519.py
Executable file
|
@ -0,0 +1,99 @@
|
|||
#! /usr/bin/python
|
||||
|
||||
import unittest
|
||||
|
||||
from curve25519 import Private, Public
|
||||
from hashlib import sha1, sha256
|
||||
from binascii import hexlify
|
||||
|
||||
class Basic(unittest.TestCase):
|
||||
def test_basic(self):
|
||||
secret1 = b"abcdefghijklmnopqrstuvwxyz123456"
|
||||
self.assertEqual(len(secret1), 32)
|
||||
|
||||
secret2 = b"654321zyxwvutsrqponmlkjihgfedcba"
|
||||
self.assertEqual(len(secret2), 32)
|
||||
priv1 = Private(secret=secret1)
|
||||
pub1 = priv1.get_public()
|
||||
priv2 = Private(secret=secret2)
|
||||
pub2 = priv2.get_public()
|
||||
shared12 = priv1.get_shared_key(pub2)
|
||||
e = b"b0818125eab42a8ac1af5e8b9b9c15ed2605c2bbe9675de89e5e6e7f442b9598"
|
||||
self.assertEqual(hexlify(shared12), e)
|
||||
shared21 = priv2.get_shared_key(pub1)
|
||||
self.assertEqual(shared12, shared21)
|
||||
|
||||
pub2a = Public(pub2.serialize())
|
||||
shared12a = priv1.get_shared_key(pub2a)
|
||||
self.assertEqual(hexlify(shared12a), e)
|
||||
|
||||
def test_errors(self):
|
||||
priv1 = Private()
|
||||
self.assertRaises(ValueError, priv1.get_shared_key, priv1)
|
||||
|
||||
def test_seed(self):
|
||||
# use 32-byte secret
|
||||
self.assertRaises(TypeError, Private, secret=123)
|
||||
self.assertRaises(TypeError, Private, secret=b"too short")
|
||||
secret1 = b"abcdefghijklmnopqrstuvwxyz123456"
|
||||
assert len(secret1) == 32
|
||||
priv1 = Private(secret=secret1)
|
||||
priv1a = Private(secret=secret1)
|
||||
priv1b = Private(priv1.serialize())
|
||||
self.assertEqual(priv1.serialize(), priv1a.serialize())
|
||||
self.assertEqual(priv1.serialize(), priv1b.serialize())
|
||||
e = b"6062636465666768696a6b6c6d6e6f707172737475767778797a313233343576"
|
||||
self.assertEqual(hexlify(priv1.serialize()), e)
|
||||
|
||||
# the private key is a clamped form of the secret, so they won't
|
||||
# quite be the same
|
||||
p = Private(secret=b"\x00"*32)
|
||||
self.assertEqual(hexlify(p.serialize()), b"00"*31+b"40")
|
||||
p = Private(secret=b"\xff"*32)
|
||||
self.assertEqual(hexlify(p.serialize()), b"f8"+b"ff"*30+b"7f")
|
||||
|
||||
# use arbitrary-length seed
|
||||
self.assertRaises(TypeError, Private, seed=123)
|
||||
priv1 = Private(seed=b"abc")
|
||||
priv1a = Private(seed=b"abc")
|
||||
priv1b = Private(priv1.serialize())
|
||||
self.assertEqual(priv1.serialize(), priv1a.serialize())
|
||||
self.assertEqual(priv1.serialize(), priv1b.serialize())
|
||||
self.assertRaises(AssertionError, Private, seed=b"abc", secret=b"no")
|
||||
|
||||
priv1 = Private(seed=b"abc")
|
||||
priv1a = Private(priv1.serialize())
|
||||
self.assertEqual(priv1.serialize(), priv1a.serialize())
|
||||
self.assertRaises(AssertionError, Private, seed=b"abc", secret=b"no")
|
||||
|
||||
# use built-in os.urandom
|
||||
priv2 = Private()
|
||||
priv2a = Private(priv2.private)
|
||||
self.assertEqual(priv2.serialize(), priv2a.serialize())
|
||||
|
||||
# attempt to use both secret= and seed=, not allowed
|
||||
self.assertRaises(AssertionError, Private, seed=b"abc", secret=b"no")
|
||||
|
||||
def test_hashfunc(self):
|
||||
priv1 = Private(seed=b"abc")
|
||||
priv2 = Private(seed=b"def")
|
||||
shared_sha256 = priv1.get_shared_key(priv2.get_public())
|
||||
e = b"da959ffe77ebeb4757fe5ba310e28ede425ae0d0ff5ec9c884e2d08f311cf5e5"
|
||||
self.assertEqual(hexlify(shared_sha256), e)
|
||||
|
||||
# confirm the hash function remains what we think it is
|
||||
def myhash(shared_key):
|
||||
return sha256(b"curve25519-shared:"+shared_key).digest()
|
||||
shared_myhash = priv1.get_shared_key(priv2.get_public(), myhash)
|
||||
self.assertEqual(hexlify(shared_myhash), e)
|
||||
|
||||
def hexhash(shared_key):
|
||||
return sha1(shared_key).hexdigest().encode()
|
||||
shared_hexhash = priv1.get_shared_key(priv2.get_public(), hexhash)
|
||||
self.assertEqual(shared_hexhash,
|
||||
b"80eec98222c8edc4324fb9477a3c775ce7c6c93a")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
46
python-src/curve25519/test/test_speed.py
Executable file
46
python-src/curve25519/test/test_speed.py
Executable file
|
@ -0,0 +1,46 @@
|
|||
#! /usr/bin/python
|
||||
|
||||
from time import time
|
||||
from curve25519 import Private
|
||||
|
||||
count = 10000
|
||||
elapsed_get_public = 0.0
|
||||
elapsed_get_shared = 0.0
|
||||
|
||||
def abbreviate_time(data):
|
||||
# 1.23s, 790ms, 132us
|
||||
if data is None:
|
||||
return ""
|
||||
s = float(data)
|
||||
if s >= 10:
|
||||
#return abbreviate.abbreviate_time(data)
|
||||
return "%d" % s
|
||||
if s >= 1.0:
|
||||
return "%.2fs" % s
|
||||
if s >= 0.01:
|
||||
return "%dms" % (1000*s)
|
||||
if s >= 0.001:
|
||||
return "%.1fms" % (1000*s)
|
||||
if s >= 0.000001:
|
||||
return "%.1fus" % (1000000*s)
|
||||
return "%dns" % (1000000000*s)
|
||||
|
||||
def nohash(key): return key
|
||||
|
||||
for i in range(count):
|
||||
p = Private()
|
||||
start = time()
|
||||
pub = p.get_public()
|
||||
elapsed_get_public += time() - start
|
||||
pub2 = Private().get_public()
|
||||
start = time()
|
||||
shared = p.get_shared_key(pub2) #, hashfunc=nohash)
|
||||
elapsed_get_shared += time() - start
|
||||
|
||||
print("get_public: %s" % abbreviate_time(elapsed_get_public / count))
|
||||
print("get_shared: %s" % abbreviate_time(elapsed_get_shared / count))
|
||||
|
||||
# these take about 560us-570us each (with the default compiler settings, -Os)
|
||||
# on my laptop, same with -O2
|
||||
# of which the python overhead is about 5us
|
||||
# and the get_shared_key() hash step adds about 5us
|
38
setup.py
Executable file
38
setup.py
Executable file
|
@ -0,0 +1,38 @@
|
|||
#! /usr/bin/python
|
||||
|
||||
from subprocess import Popen, PIPE
|
||||
from distutils.core import setup, Extension
|
||||
|
||||
version = Popen(["git", "describe", "--tags"], stdout=PIPE).communicate()[0]\
|
||||
.strip().decode("utf8")
|
||||
|
||||
ext_modules = [Extension("curve25519._curve25519",
|
||||
["python-src/curve25519/curve25519module.c",
|
||||
"curve25519-donna.c"],
|
||||
)]
|
||||
|
||||
short_description="Python wrapper for the Curve25519 cryptographic library"
|
||||
long_description="""\
|
||||
Curve25519 is a fast elliptic-curve key-agreement protocol, in which two
|
||||
parties Alice and Bob each generate a (public,private) keypair, exchange
|
||||
public keys, and can then compute the same shared key. Specifically, Alice
|
||||
computes F(Aprivate, Bpublic), Bob computes F(Bprivate, Apublic), and both
|
||||
get the same value (and nobody else can guess that shared value, even if they
|
||||
know Apublic and Bpublic).
|
||||
|
||||
This is a Python wrapper for the portable 'curve25519-donna' implementation
|
||||
of this algorithm, written by Adam Langley, hosted at
|
||||
http://code.google.com/p/curve25519-donna/
|
||||
"""
|
||||
|
||||
setup(name="curve25519-donna",
|
||||
version=version,
|
||||
description=short_description,
|
||||
long_description=long_description,
|
||||
author="Brian Warner",
|
||||
author_email="warner-pycurve25519-donna@lothar.com",
|
||||
license="BSD",
|
||||
packages=["curve25519", "curve25519.test"],
|
||||
package_dir={"curve25519": "python-src/curve25519"},
|
||||
ext_modules=ext_modules,
|
||||
)
|
50
speed-curve25519.c
Normal file
50
speed-curve25519.c
Normal file
|
@ -0,0 +1,50 @@
|
|||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <sys/time.h>
|
||||
#include <time.h>
|
||||
#include <stdint.h>
|
||||
|
||||
typedef uint8_t u8;
|
||||
|
||||
extern void curve25519_donna(u8 *output, const u8 *secret, const u8 *bp);
|
||||
|
||||
static uint64_t
|
||||
time_now() {
|
||||
struct timeval tv;
|
||||
uint64_t ret;
|
||||
|
||||
gettimeofday(&tv, NULL);
|
||||
ret = tv.tv_sec;
|
||||
ret *= 1000000;
|
||||
ret += tv.tv_usec;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int
|
||||
main() {
|
||||
static const unsigned char basepoint[32] = {9};
|
||||
unsigned char mysecret[32], mypublic[32];
|
||||
unsigned i;
|
||||
uint64_t start, end;
|
||||
|
||||
memset(mysecret, 42, 32);
|
||||
mysecret[0] &= 248;
|
||||
mysecret[31] &= 127;
|
||||
mysecret[31] |= 64;
|
||||
|
||||
// Load the caches
|
||||
for (i = 0; i < 1000; ++i) {
|
||||
curve25519_donna(mypublic, mysecret, basepoint);
|
||||
}
|
||||
|
||||
start = time_now();
|
||||
for (i = 0; i < 30000; ++i) {
|
||||
curve25519_donna(mypublic, mysecret, basepoint);
|
||||
}
|
||||
end = time_now();
|
||||
|
||||
printf("%luus\n", (unsigned long) ((end - start) / 30000));
|
||||
|
||||
return 0;
|
||||
}
|
54
test-curve25519.c
Normal file
54
test-curve25519.c
Normal file
|
@ -0,0 +1,54 @@
|
|||
/*
|
||||
test-curve25519 version 20050915
|
||||
D. J. Bernstein
|
||||
Public domain.
|
||||
|
||||
Tiny modifications by agl
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
extern void curve25519_donna(unsigned char *output, const unsigned char *a,
|
||||
const unsigned char *b);
|
||||
void doit(unsigned char *ek,unsigned char *e,unsigned char *k);
|
||||
|
||||
void doit(unsigned char *ek,unsigned char *e,unsigned char *k)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0;i < 32;++i) printf("%02x",(unsigned int) e[i]); printf(" ");
|
||||
for (i = 0;i < 32;++i) printf("%02x",(unsigned int) k[i]); printf(" ");
|
||||
curve25519_donna(ek,e,k);
|
||||
for (i = 0;i < 32;++i) printf("%02x",(unsigned int) ek[i]); printf("\n");
|
||||
}
|
||||
|
||||
unsigned char e1k[32];
|
||||
unsigned char e2k[32];
|
||||
unsigned char e1e2k[32];
|
||||
unsigned char e2e1k[32];
|
||||
unsigned char e1[32] = {3};
|
||||
unsigned char e2[32] = {5};
|
||||
unsigned char k[32] = {9};
|
||||
|
||||
int
|
||||
main()
|
||||
{
|
||||
int loop;
|
||||
int i;
|
||||
|
||||
for (loop = 0;loop < 10000;++loop) {
|
||||
doit(e1k,e1,k);
|
||||
doit(e2e1k,e2,e1k);
|
||||
doit(e2k,e2,k);
|
||||
doit(e1e2k,e1,e2k);
|
||||
for (i = 0;i < 32;++i) if (e1e2k[i] != e2e1k[i]) {
|
||||
printf("fail\n");
|
||||
return 1;
|
||||
}
|
||||
for (i = 0;i < 32;++i) e1[i] ^= e2k[i];
|
||||
for (i = 0;i < 32;++i) e2[i] ^= e1k[i];
|
||||
for (i = 0;i < 32;++i) k[i] ^= e1e2k[i];
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
39
test-noncanon.c
Normal file
39
test-noncanon.c
Normal file
|
@ -0,0 +1,39 @@
|
|||
/* This file can be used to test whether the code handles non-canonical curve
|
||||
* points (i.e. points with the 256th bit set) in the same way as the reference
|
||||
* implementation. */
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
extern void curve25519_donna(unsigned char *output, const unsigned char *a,
|
||||
const unsigned char *b);
|
||||
int
|
||||
main()
|
||||
{
|
||||
static const uint8_t point1[32] = {
|
||||
0x25,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
|
||||
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
|
||||
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
|
||||
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
|
||||
};
|
||||
static const uint8_t point2[32] = {
|
||||
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
|
||||
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
|
||||
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
|
||||
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
|
||||
};
|
||||
static const uint8_t scalar[32] = { 1 };
|
||||
uint8_t out1[32], out2[32];
|
||||
|
||||
curve25519_donna(out1, scalar, point1);
|
||||
curve25519_donna(out2, scalar, point2);
|
||||
|
||||
if (0 == memcmp(out1, out2, sizeof(out1))) {
|
||||
fprintf(stderr, "Top bit not ignored.\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
fprintf(stderr, "Top bit correctly ignored.\n");
|
||||
return 0;
|
||||
}
|
72
test-sc-curve25519.c
Normal file
72
test-sc-curve25519.c
Normal file
|
@ -0,0 +1,72 @@
|
|||
#define _GNU_SOURCE
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <stdint.h>
|
||||
#include <math.h>
|
||||
|
||||
extern void curve25519_donna(uint8_t *, const uint8_t *, const uint8_t *);
|
||||
extern uint64_t tsc_read();
|
||||
|
||||
int
|
||||
main(int argc, char **argv) {
|
||||
uint8_t private_key[32], public[32], peer1[32], peer2[32], output[32];
|
||||
static const uint8_t basepoint[32] = {9};
|
||||
unsigned i;
|
||||
uint64_t sum = 0, sum_squares = 0, skipped = 0, mean;
|
||||
static const unsigned count = 200000;
|
||||
|
||||
memset(private_key, 42, sizeof(private_key));
|
||||
|
||||
private_key[0] &= 248;
|
||||
private_key[31] &= 127;
|
||||
private_key[31] |= 64;
|
||||
|
||||
curve25519_donna(public, private_key, basepoint);
|
||||
memset(peer1, 0, sizeof(peer1));
|
||||
memset(peer2, 255, sizeof(peer2));
|
||||
|
||||
for (i = 0; i < count; ++i) {
|
||||
const uint64_t start = tsc_read();
|
||||
curve25519_donna(output, peer1, public);
|
||||
const uint64_t end = tsc_read();
|
||||
const uint64_t delta = end - start;
|
||||
if (delta > 650000) {
|
||||
// something terrible happened (task switch etc)
|
||||
skipped++;
|
||||
continue;
|
||||
}
|
||||
sum += delta;
|
||||
sum_squares += (delta * delta);
|
||||
}
|
||||
|
||||
mean = sum / ((uint64_t) count);
|
||||
printf("all 0: mean:%lu sd:%f skipped:%lu\n",
|
||||
mean,
|
||||
sqrt((double)(sum_squares/((uint64_t) count) - mean*mean)),
|
||||
skipped);
|
||||
|
||||
sum = sum_squares = skipped = 0;
|
||||
|
||||
for (i = 0; i < count; ++i) {
|
||||
const uint64_t start = tsc_read();
|
||||
curve25519_donna(output, peer2, public);
|
||||
const uint64_t end = tsc_read();
|
||||
const uint64_t delta = end - start;
|
||||
if (delta > 650000) {
|
||||
// something terrible happened (task switch etc)
|
||||
skipped++;
|
||||
continue;
|
||||
}
|
||||
sum += delta;
|
||||
sum_squares += (delta * delta);
|
||||
}
|
||||
|
||||
mean = sum / ((uint64_t) count);
|
||||
printf("all 1: mean:%lu sd:%f skipped:%lu\n",
|
||||
mean,
|
||||
sqrt((double)(sum_squares/((uint64_t) count) - mean*mean)),
|
||||
skipped);
|
||||
|
||||
return 0;
|
||||
}
|
8
test-sc-curve25519.s
Normal file
8
test-sc-curve25519.s
Normal file
|
@ -0,0 +1,8 @@
|
|||
.text
|
||||
.globl tsc_read
|
||||
|
||||
tsc_read:
|
||||
rdtsc
|
||||
shl $32,%rdx
|
||||
or %rdx,%rax
|
||||
ret
|
Loading…
Reference in a new issue