Merge branch 'master' into markdown
This commit is contained in:
commit
c368898cef
3 changed files with 396 additions and 14 deletions
362
docs/megolm.rst
Normal file
362
docs/megolm.rst
Normal file
|
@ -0,0 +1,362 @@
|
|||
.. Copyright 2016 OpenMarket Ltd
|
||||
..
|
||||
.. Licensed under the Apache License, Version 2.0 (the "License");
|
||||
.. you may not use this file except in compliance with the License.
|
||||
.. You may obtain a copy of the License at
|
||||
..
|
||||
.. http://www.apache.org/licenses/LICENSE-2.0
|
||||
..
|
||||
.. Unless required by applicable law or agreed to in writing, software
|
||||
.. distributed under the License is distributed on an "AS IS" BASIS,
|
||||
.. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
.. See the License for the specific language governing permissions and
|
||||
.. limitations under the License.
|
||||
|
||||
|
||||
Megolm group ratchet
|
||||
====================
|
||||
|
||||
An AES-based cryptographic ratchet intended for group communications.
|
||||
|
||||
.. contents::
|
||||
|
||||
Background
|
||||
----------
|
||||
|
||||
The Megolm ratchet is intended for encrypted messaging applications where there
|
||||
may be a large number of recipients of each message, thus precluding the use of
|
||||
peer-to-peer encryption systems such as `Olm`_.
|
||||
|
||||
It also allows a recipient to decrypt received messages multiple times. For
|
||||
instance, in client/server applications, a copy of the ciphertext can be stored
|
||||
on the (untrusted) server, while the client need only store the session keys.
|
||||
|
||||
Overview
|
||||
--------
|
||||
|
||||
Each participant in a conversation uses their own outbound session for
|
||||
encrypting messages. A session consists of a ratchet and an `Ed25519`_ keypair.
|
||||
|
||||
Secrecy is provided by the ratchet, which can be wound forwards but not
|
||||
backwards, and is used to derive a distinct message key for each message.
|
||||
|
||||
Authenticity is provided via Ed25519 signatures.
|
||||
|
||||
The value of the ratchet, and the public part of the Ed25519 key, are shared
|
||||
with other participants in the conversation via secure peer-to-peer
|
||||
channels. Provided that peer-to-peer channel provides authenticity of the
|
||||
messages to the participants and deniability of the messages to third parties,
|
||||
the Megolm session will inherit those properties.
|
||||
|
||||
The Megolm ratchet algorithm
|
||||
----------------------------
|
||||
|
||||
The Megolm ratchet :math:`R_i` consists of four parts, :math:`R_{i,j}` for
|
||||
:math:`j \in {0,1,2,3}`. The length of each part depends on the hash function
|
||||
in use (256 bits for this version of Megolm).
|
||||
|
||||
The ratchet is initialised with cryptographically-secure random data, and
|
||||
advanced as follows:
|
||||
|
||||
.. math::
|
||||
\begin{align}
|
||||
R_{i,0} &=
|
||||
\begin{cases}
|
||||
H_0\left(R_{2^24(n-1),0}\right) &\text{if }\exists n | i = 2^24n\\
|
||||
R_{i-1,0} &\text{otherwise}
|
||||
\end{cases}\\
|
||||
R_{i,1} &=
|
||||
\begin{cases}
|
||||
H_1\left(R_{2^24(n-1),0}\right) &\text{if }\exists n | i = 2^24n\\
|
||||
H_1\left(R_{2^16(m-1),1}\right) &\text{if }\exists m | i = 2^16m\\
|
||||
R_{i-1,1} &\text{otherwise}
|
||||
\end{cases}\\
|
||||
R_{i,2} &=
|
||||
\begin{cases}
|
||||
H_2\left(R_{2^24(n-1),0}\right) &\text{if }\exists n | i = 2^24n\\
|
||||
H_2\left(R_{2^16(m-1),1}\right) &\text{if }\exists m | i = 2^16m\\
|
||||
H_2\left(R_{2^8(p-1),2}\right) &\text{if }\exists p | i = 2^8p\\
|
||||
R_{i-1,2} &\text{otherwise}
|
||||
\end{cases}\\
|
||||
R_{i,3} &=
|
||||
\begin{cases}
|
||||
H_3\left(R_{2^24(n-1),0}\right) &\text{if }\exists n | i = 2^24n\\
|
||||
H_3\left(R_{2^16(m-1),1}\right) &\text{if }\exists m | i = 2^16m\\
|
||||
H_3\left(R_{2^8(p-1),2}\right) &\text{if }\exists p | i = 2^8p\\
|
||||
H_3\left(R_{i-1,3}\right) &\text{otherwise}
|
||||
\end{cases}
|
||||
\end{align}
|
||||
|
||||
where :math:`H_0`, :math:`H_1`, :math:`H_2`, and :math:`H_3` are different hash
|
||||
functions. In summary: every :math:`2^8` iterations, :math:`R_{i,3}` is
|
||||
reseeded from :math:`R_{i,2}`. Every :math:`2^16` iterations, :math:`R_{i,2}`
|
||||
and :math:`R_{i,3}` are reseeded from :math:`R_{i,1}`. Every :math:`2^24`
|
||||
iterations, :math:`R_{i,1}`, :math:`R_{i,2}` and :math:`R_{i,3}` are reseeded
|
||||
from :math:`R_{i,0}`.
|
||||
|
||||
The complete ratchet value, :math:`R_{i}`, is hashed to generate the keys used
|
||||
to encrypt each message. This scheme allows the ratchet to be advanced an
|
||||
arbitrary amount forwards while needing at most 1020 hash computations. A
|
||||
client can decrypt chat history onwards from the earliest value of the ratchet
|
||||
it is aware of, but cannot decrypt history from before that point without
|
||||
reversing the hash function.
|
||||
|
||||
This allows a participant to share its ability to decrypt chat history with
|
||||
another from a point in the conversation onwards by giving a copy of the
|
||||
ratchet at that point in the conversation.
|
||||
|
||||
|
||||
The Megolm protocol
|
||||
-------------------
|
||||
|
||||
Session setup
|
||||
~~~~~~~~~~~~~
|
||||
|
||||
Each participant in a conversation generates their own Megolm session. A
|
||||
session consists of three parts:
|
||||
|
||||
* a 32 bit counter, :math:`i`.
|
||||
* an `Ed25519`_ keypair, :math:`K`.
|
||||
* a ratchet, :math:`R_i`, which consists of four 256-bit values,
|
||||
:math:`R_{i,j}` for :math:`j \in {0,1,2,3}`.
|
||||
|
||||
The counter :math:`i` is initialised to :math:`0`. A new Ed25519 keypair is
|
||||
generated for :math:`K`. The ratchet is simply initialised with 1024 bits of
|
||||
cryptographically-secure random data.
|
||||
|
||||
A single participant may use multiple sessions over the lifetime of a
|
||||
conversation. The public part of :math:`K` is used as an identifier to
|
||||
discriminate between sessions.
|
||||
|
||||
Sharing session data
|
||||
~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
To allow other participants in the conversation to decrypt messages, the
|
||||
session data is formatted as described in `Session-sharing format`_. It is then
|
||||
shared with other participants in the conversation via a secure peer-to-peer
|
||||
channel (such as that provided by `Olm`_).
|
||||
|
||||
When the session data is received from other participants, the recipient first
|
||||
checks that the signature matches the public key. They then store their own
|
||||
copy of the counter, ratchet, and public key.
|
||||
|
||||
Message encryption
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
This version of Megolm uses AES-256_ in CBC_ mode with `PKCS#7`_ padding and
|
||||
HMAC-SHA-256_ (truncated to 64 bits). The 256 bit AES key, 256 bit HMAC key,
|
||||
and 128 bit AES IV are derived from the megolm ratchet :math:`R_i`:
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{align}
|
||||
AES\_KEY_{i}\;\parallel\;HMAC\_KEY_{i}\;\parallel\;AES\_IV_{i}
|
||||
&= HKDF\left(0,\,R_{i},\text{"MEGOLM\_KEYS"},\,80\right) \\
|
||||
\end{align}
|
||||
|
||||
where :math:`\parallel` represents string splitting, and
|
||||
:math:`HKDF\left(salt,\,IKM,\,info,\,L\right)` refers to the `HMAC-based key
|
||||
derivation function`_ using using `SHA-256`_ as the hash function
|
||||
(`HKDF-SHA-256`_) with a salt value of :math:`salt`, input key material of
|
||||
:math:`IKM`, context string :math:`info`, and output keying material length of
|
||||
:math:`L` bytes.
|
||||
|
||||
The plain-text is encrypted with AES-256, using the key :math:`AES\_KEY_{i}`
|
||||
and the IV :math:`AES\_IV_{i}` to give the cipher-text, :math:`X_{i}`.
|
||||
|
||||
The ratchet index :math:`i`, and the cipher-text :math:`X_{i}`, are then packed
|
||||
into a message as described in `Message format`_. Then the entire message
|
||||
(including the version bytes and all payload bytes) are passed through
|
||||
HMAC-SHA-256. The first 8 bytes of the MAC are appended to the message.
|
||||
|
||||
Finally, the authenticated message is signed using the Ed25519 keypair; the 64
|
||||
byte signature is appended to the message.
|
||||
|
||||
The complete signed message, together with the public part of :math:`K` (acting
|
||||
as a session identifier), can then be sent over an insecure channel. The
|
||||
message can then be authenticated and decrypted only by recipients who have
|
||||
received the session data.
|
||||
|
||||
Advancing the ratchet
|
||||
~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
After each message is encrypted, the ratchet is advanced. This is done as
|
||||
described in `The Megolm ratchet algorithm`_, using the following definitions:
|
||||
|
||||
.. math::
|
||||
\begin{align}
|
||||
H_0(A) &\equiv HMAC(A,\text{"\textbackslash x00"}) \\
|
||||
H_1(A) &\equiv HMAC(A,\text{"\textbackslash x01"}) \\
|
||||
H_2(A) &\equiv HMAC(A,\text{"\textbackslash x02"}) \\
|
||||
H_3(A) &\equiv HMAC(A,\text{"\textbackslash x03"}) \\
|
||||
\end{align}
|
||||
|
||||
where :math:`HMAC(A, T)` is the HMAC-SHA-256_ of ``T``, using ``A`` as the
|
||||
key.
|
||||
|
||||
For outbound sessions, the updated ratchet and counter are stored in the
|
||||
session.
|
||||
|
||||
In order to maintain the ability to decrypt conversation history, inbound
|
||||
sessions should store a copy of their earliest known ratchet value (unless they
|
||||
explicitly want to drop the ability to decrypt that history - see `Partial
|
||||
Forward Secrecy`_\ ). They may also choose to cache calculated ratchet values,
|
||||
but the decision of which ratchet states to cache is left to the application.
|
||||
|
||||
Data exchange formats
|
||||
---------------------
|
||||
|
||||
Session-sharing format
|
||||
~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The Megolm key-sharing format is as follows:
|
||||
|
||||
.. code::
|
||||
|
||||
+---+----+--------+--------+--------+--------+------+-----------+
|
||||
| V | i | R(i,0) | R(i,1) | R(i,2) | R(i,3) | Kpub | Signature |
|
||||
+---+----+--------+--------+--------+--------+------+-----------+
|
||||
0 1 5 37 69 101 133 165 229 bytes
|
||||
|
||||
The version byte, ``V``, is ``"\x02"``.
|
||||
|
||||
This is followed by the ratchet index, :math:`i`, which is encoded as a
|
||||
big-endian 32-bit integer; the ratchet values :math:`R_{i,j}`; and the public
|
||||
part of the Ed25519 keypair :math:`K`.
|
||||
|
||||
The data is then signed using the Ed25519 keypair, and the 64-byte signature is
|
||||
appended.
|
||||
|
||||
Message format
|
||||
~~~~~~~~~~~~~~
|
||||
|
||||
Megolm messages consist of a one byte version, followed by a variable length
|
||||
payload, a fixed length message authentication code, and a fixed length
|
||||
signature.
|
||||
|
||||
.. code::
|
||||
|
||||
+---+------------------------------------+-----------+------------------+
|
||||
| V | Payload Bytes | MAC Bytes | Signature Bytes |
|
||||
+---+------------------------------------+-----------+------------------+
|
||||
0 1 N N+8 N+72 bytes
|
||||
|
||||
The version byte, ``V``, is ``"\x03"``.
|
||||
|
||||
The payload uses a format based on the `Protocol Buffers encoding`_. It
|
||||
consists of the following key-value pairs:
|
||||
|
||||
============= ===== ======== ================================================
|
||||
Name Tag Type Meaning
|
||||
============= ===== ======== ================================================
|
||||
Message-Index 0x08 Integer The index of the ratchet, :math:`i`
|
||||
Cipher-Text 0x12 String The cipher-text, :math:`X_{i}`, of the message
|
||||
============= ===== ======== ================================================
|
||||
|
||||
Within the payload, integers are encoded using a variable length encoding. Each
|
||||
integer is encoded as a sequence of bytes with the high bit set followed by a
|
||||
byte with the high bit clear. The seven low bits of each byte store the bits of
|
||||
the integer. The least significant bits are stored in the first byte.
|
||||
|
||||
Strings are encoded as a variable-length integer followed by the string itself.
|
||||
|
||||
Each key-value pair is encoded as a variable-length integer giving the tag,
|
||||
followed by a string or variable-length integer giving the value.
|
||||
|
||||
The payload is followed by the MAC. The length of the MAC is determined by the
|
||||
authenticated encryption algorithm being used (8 bytes in this version of the
|
||||
protocol). The MAC protects all of the bytes preceding the MAC.
|
||||
|
||||
The length of the signature is determined by the signing algorithm being used
|
||||
(64 bytes in this version of the protocol). The signature covers all of the
|
||||
bytes preceding the signature.
|
||||
|
||||
Limitations
|
||||
-----------
|
||||
|
||||
Message Replays
|
||||
---------------
|
||||
|
||||
A message can be decrypted successfully multiple times. This means that an
|
||||
attacker can re-send a copy of an old message, and the recipient will treat it
|
||||
as a new message.
|
||||
|
||||
To mitigate this it is recommended that applications track the ratchet indices
|
||||
they have received and that they reject messages with a ratchet index that
|
||||
they have already decrypted.
|
||||
|
||||
Lack of Transcript Consistency
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
In a group conversation, there is no guarantee that all recipients have
|
||||
received the same messages. For example, if Alice is in a conversation with Bob
|
||||
and Charlie, she could send different messages to Bob and Charlie, or could
|
||||
send some messages to Bob but not Charlie, or vice versa.
|
||||
|
||||
Solving this is, in general, a hard problem, particularly in a protocol which
|
||||
does not guarantee in-order message delivery. For now it remains the subject of
|
||||
future research.
|
||||
|
||||
Lack of Backward Secrecy
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Once the key to a Megolm session is compromised, the attacker can decrypt any
|
||||
future messages sent via that session.
|
||||
|
||||
In order to mitigate this, the application should ensure that Megolm sessions
|
||||
are not used indefinitely. Instead it should periodically start a new session,
|
||||
with new keys shared over a secure channel.
|
||||
|
||||
.. TODO: Can we recommend sensible lifetimes for Megolm sessions? Probably
|
||||
depends how paranoid we're feeling, but some guidelines might be useful.
|
||||
|
||||
Partial Forward Secrecy
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Each recipient maintains a record of the ratchet value which allows them to
|
||||
decrypt any messages sent in the session after the corresponding point in the
|
||||
conversation. If this value is compromised, an attacker can similarly decrypt
|
||||
those past messages.
|
||||
|
||||
To mitigate this issue, the application should offer the user the option to
|
||||
discard historical conversations, by winding forward any stored ratchet values,
|
||||
or discarding sessions altogether.
|
||||
|
||||
Dependency on secure channel for key exchange
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The design of the Megolm ratchet relies on the availability of a secure
|
||||
peer-to-peer channel for the exchange of session keys. Any vulnerabilities in
|
||||
the underlying channel are likely to be amplified when applied to Megolm
|
||||
session setup.
|
||||
|
||||
For example, if the peer-to-peer channel is vulnerable to an unknown key-share
|
||||
attack, the entire Megolm session become similarly vulnerable. For example:
|
||||
Alice starts a group chat with Eve, and shares the session keys with Eve. Eve
|
||||
uses the unknown key-share attack to forward the session keys to Bob, who
|
||||
believes Alice is starting the session with him. Eve then forwards messages
|
||||
from the Megolm session to Bob, who again believes they are coming from
|
||||
Alice. Provided the peer-to-peer channel is not vulnerable to this attack, Bob
|
||||
will realise that the key-sharing message was forwarded by Eve, and can treat
|
||||
the Megolm session as a forgery.
|
||||
|
||||
A second example: if the peer-to-peer channel is vulnerable to a replay
|
||||
attack, this can be extended to entire Megolm sessions.
|
||||
|
||||
License
|
||||
-------
|
||||
|
||||
The Megolm specification (this document) is licensed under the `Apache License,
|
||||
Version 2.0 <http://www.apache.org/licenses/LICENSE-2.0>`_.
|
||||
|
||||
|
||||
.. _`Ed25519`: http://ed25519.cr.yp.to/
|
||||
.. _`HMAC-based key derivation function`: https://tools.ietf.org/html/rfc5869
|
||||
.. _`HKDF-SHA-256`: https://tools.ietf.org/html/rfc5869
|
||||
.. _`HMAC-SHA-256`: https://tools.ietf.org/html/rfc2104
|
||||
.. _`SHA-256`: https://tools.ietf.org/html/rfc6234
|
||||
.. _`AES-256`: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
|
||||
.. _`CBC`: http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
|
||||
.. _`PKCS#7`: https://tools.ietf.org/html/rfc2315
|
||||
.. _`Olm`: ./olm.html
|
||||
.. _`Protocol Buffers encoding`: https://developers.google.com/protocol-buffers/docs/encoding
|
|
@ -87,7 +87,7 @@ size_t olm_pk_encrypt(
|
|||
void * ciphertext, size_t ciphertext_length,
|
||||
void * mac, size_t mac_length,
|
||||
void * ephemeral_key, size_t ephemeral_key_size,
|
||||
void * random, size_t random_length
|
||||
const void * random, size_t random_length
|
||||
);
|
||||
|
||||
typedef struct OlmPkDecryption OlmPkDecryption;
|
||||
|
@ -133,7 +133,7 @@ size_t olm_pk_generate_key_random_length(void);
|
|||
size_t olm_pk_key_from_private(
|
||||
OlmPkDecryption * decryption,
|
||||
void * pubkey, size_t pubkey_length,
|
||||
void * privkey, size_t privkey_length
|
||||
const void * privkey, size_t privkey_length
|
||||
);
|
||||
|
||||
/** DEPRECATED: Use olm_pk_key_from_private
|
||||
|
@ -141,7 +141,7 @@ size_t olm_pk_key_from_private(
|
|||
size_t olm_pk_generate_key(
|
||||
OlmPkDecryption * decryption,
|
||||
void * pubkey, size_t pubkey_length,
|
||||
void * privkey, size_t privkey_length
|
||||
const void * privkey, size_t privkey_length
|
||||
);
|
||||
|
||||
/** Returns the number of bytes needed to store a decryption object. */
|
||||
|
@ -230,19 +230,39 @@ size_t olm_clear_pk_signing(
|
|||
);
|
||||
|
||||
/**
|
||||
* Initialise the signing object with a public/private keypair from a seed
|
||||
* Initialise the signing object with a public/private keypair from a seed. The
|
||||
* associated public key will be written to the pubkey buffer. Returns
|
||||
* olm_error() on failure. If the public key buffer is too small then
|
||||
* olm_pk_signing_last_error() will be "OUTPUT_BUFFER_TOO_SMALL". If the seed
|
||||
* buffer is too small then olm_pk_signing_last_error() will be
|
||||
* "INPUT_BUFFER_TOO_SMALL".
|
||||
*/
|
||||
size_t olm_pk_signing_key_from_seed(
|
||||
OlmPkSigning * sign,
|
||||
void * pubkey, size_t pubkey_length,
|
||||
void * seed, size_t seed_length
|
||||
const void * seed, size_t seed_length
|
||||
);
|
||||
|
||||
/**
|
||||
* The size required for the seed for initialising a signing object.
|
||||
*/
|
||||
size_t olm_pk_signing_seed_length(void);
|
||||
|
||||
/**
|
||||
* The size of the public key of a signing object.
|
||||
*/
|
||||
size_t olm_pk_signing_public_key_length(void);
|
||||
|
||||
size_t olm_pk_signature_length();
|
||||
/**
|
||||
* The size of a signature created by a signing object.
|
||||
*/
|
||||
size_t olm_pk_signature_length(void);
|
||||
|
||||
/**
|
||||
* Sign a message. The signature will be written to the signature
|
||||
* buffer. Returns olm_error() on failure. If the signature buffer is too
|
||||
* small, olm_pk_signing_last_error() will be "OUTPUT_BUFFER_TOO_SMALL".
|
||||
*/
|
||||
size_t olm_pk_sign(
|
||||
OlmPkSigning *sign,
|
||||
uint8_t const * message, size_t message_length,
|
||||
|
|
16
src/pk.cpp
16
src/pk.cpp
|
@ -108,7 +108,7 @@ size_t olm_pk_encrypt(
|
|||
void * ciphertext, size_t ciphertext_length,
|
||||
void * mac, size_t mac_length,
|
||||
void * ephemeral_key, size_t ephemeral_key_size,
|
||||
void * random, size_t random_length
|
||||
const void * random, size_t random_length
|
||||
) {
|
||||
if (ciphertext_length
|
||||
< olm_pk_ciphertext_length(encryption, plaintext_length)
|
||||
|
@ -127,7 +127,7 @@ size_t olm_pk_encrypt(
|
|||
}
|
||||
|
||||
_olm_curve25519_key_pair ephemeral_keypair;
|
||||
_olm_crypto_curve25519_generate_key((uint8_t *) random, &ephemeral_keypair);
|
||||
_olm_crypto_curve25519_generate_key((const uint8_t *) random, &ephemeral_keypair);
|
||||
olm::encode_base64(
|
||||
(const uint8_t *)ephemeral_keypair.public_key.public_key,
|
||||
CURVE25519_KEY_LENGTH,
|
||||
|
@ -202,7 +202,7 @@ size_t olm_pk_key_length(void) {
|
|||
size_t olm_pk_key_from_private(
|
||||
OlmPkDecryption * decryption,
|
||||
void * pubkey, size_t pubkey_length,
|
||||
void * privkey, size_t privkey_length
|
||||
const void * privkey, size_t privkey_length
|
||||
) {
|
||||
if (pubkey_length < olm_pk_key_length()) {
|
||||
decryption->last_error =
|
||||
|
@ -215,7 +215,7 @@ size_t olm_pk_key_from_private(
|
|||
return std::size_t(-1);
|
||||
}
|
||||
|
||||
_olm_crypto_curve25519_generate_key((uint8_t *) privkey, &decryption->key_pair);
|
||||
_olm_crypto_curve25519_generate_key((const uint8_t *) privkey, &decryption->key_pair);
|
||||
olm::encode_base64(
|
||||
(const uint8_t *)decryption->key_pair.public_key.public_key,
|
||||
CURVE25519_KEY_LENGTH,
|
||||
|
@ -227,7 +227,7 @@ size_t olm_pk_key_from_private(
|
|||
size_t olm_pk_generate_key(
|
||||
OlmPkDecryption * decryption,
|
||||
void * pubkey, size_t pubkey_length,
|
||||
void * privkey, size_t privkey_length
|
||||
const void * privkey, size_t privkey_length
|
||||
) {
|
||||
return olm_pk_key_from_private(decryption, pubkey, pubkey_length, privkey, privkey_length);
|
||||
}
|
||||
|
@ -447,7 +447,7 @@ size_t olm_pk_signing_public_key_length(void) {
|
|||
size_t olm_pk_signing_key_from_seed(
|
||||
OlmPkSigning * signing,
|
||||
void * pubkey, size_t pubkey_length,
|
||||
void * seed, size_t seed_length
|
||||
const void * seed, size_t seed_length
|
||||
) {
|
||||
if (pubkey_length < olm_pk_signing_public_key_length()) {
|
||||
signing->last_error =
|
||||
|
@ -460,7 +460,7 @@ size_t olm_pk_signing_key_from_seed(
|
|||
return std::size_t(-1);
|
||||
}
|
||||
|
||||
_olm_crypto_ed25519_generate_key((uint8_t *) seed, &signing->key_pair);
|
||||
_olm_crypto_ed25519_generate_key((const uint8_t *) seed, &signing->key_pair);
|
||||
olm::encode_base64(
|
||||
(const uint8_t *)signing->key_pair.public_key.public_key,
|
||||
ED25519_PUBLIC_KEY_LENGTH,
|
||||
|
@ -469,7 +469,7 @@ size_t olm_pk_signing_key_from_seed(
|
|||
return 0;
|
||||
}
|
||||
|
||||
size_t olm_pk_signature_length() {
|
||||
size_t olm_pk_signature_length(void) {
|
||||
return olm::encode_base64_length(ED25519_SIGNATURE_LENGTH);
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in a new issue