Clarifications to the doc
Make a few bits of the Olm spec a bit clearer
This commit is contained in:
parent
1fb2e3f267
commit
b5811f3b74
1 changed files with 54 additions and 26 deletions
80
docs/olm.rst
80
docs/olm.rst
|
@ -18,6 +18,11 @@ remote party's public key.
|
|||
So party :math:`A` computes :math:`ECDH\left(K_B_public,\,K_A_private\right)`
|
||||
and party :math:`B` computes :math:`ECDH\left(K_A_public,\,K_B_private\right)`
|
||||
|
||||
Where this document uses :math:`HKDF\left(salt,\,IKM,\,info,\,L\right)` it
|
||||
refers to the `HMAC-based key derivation function`_ with a salt value of
|
||||
:math:`salt`, input key material of :math:`IKM`, context string :math:`info`,
|
||||
and output keying material length of :math:`L` bytes.
|
||||
|
||||
The Olm Algorithm
|
||||
-----------------
|
||||
|
||||
|
@ -36,7 +41,8 @@ HMAC-based Key Derivation Function using SHA-256_ as the hash function
|
|||
\begin{align}
|
||||
S&=ECDH\left(I_A,\,E_B\right)\;\parallel\;ECDH\left(E_A,\,I_B\right)\;
|
||||
\parallel\;ECDH\left(E_A,\,E_B\right)\\
|
||||
R_0\;\parallel\;C_{0,0}&=HKDF\left(S,\,\text{"OLM\_ROOT"}\right)
|
||||
R_0\;\parallel\;C_{0,0}&=
|
||||
HKDF\left(0,\,S,\,\text{"OLM\_ROOT"},\,64\right)
|
||||
\end{align}
|
||||
|
||||
Advancing the root key
|
||||
|
@ -54,9 +60,10 @@ info.
|
|||
.. math::
|
||||
\begin{align}
|
||||
R_i\;\parallel\;C_{i,0}&=HKDF\left(
|
||||
ECDH\left(T_{i-1},\,T_i\right),\,
|
||||
R_{i-1},\,
|
||||
\text{"OLM\_RATCHET"}
|
||||
ECDH\left(T_{i-1},\,T_i\right),\,
|
||||
\text{"OLM\_RATCHET"},\,
|
||||
64
|
||||
\right)
|
||||
\end{align}
|
||||
|
||||
|
@ -64,7 +71,7 @@ info.
|
|||
Advancing the chain key
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Advancing a root key takes the previous chain key, :math:`C_{i,j-i}`. The next
|
||||
Advancing a chain key takes the previous chain key, :math:`C_{i,j-i}`. The next
|
||||
chain key, :math:`C_{i,j}`, is the HMAC-SHA-256_ of ``"\x02"`` using the
|
||||
previous chain key as the key.
|
||||
|
||||
|
@ -120,25 +127,35 @@ Bob.
|
|||
Creating an inbound session from a pre-key message
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Bob receives a pre-key message with Alice's identity key, :math:`I_A`,
|
||||
Alice's single-use key, :math:`E_A`, the public part of his single-use key,
|
||||
:math:`E_B`, the current chain index, :math:`j`, Alice's ratchet key,
|
||||
:math:`T_0`, and the cipher-text, :math:`X_{0,j}`. Bob looks up the private
|
||||
part of the single-use key, :math:`E_B`. Bob computes the root key :math:`R_0`,
|
||||
and the chain key :math:`C_{0,0}`. Bob then advances the chain key to compute
|
||||
the chain key used by the message, :math:`C_{0,j}`. Bob then creates the
|
||||
Bob receives a pre-key message with the public parts of Alice's identity key,
|
||||
:math:`I_A`, Alice's single-use key, :math:`E_A`, Alice's ratchet key,
|
||||
:math:`T_0`, and his own single-use key, :math:`E_B`, as well as the
|
||||
current chain index, :math:`j`, and the cipher-text, :math:`X_{0,j}`.
|
||||
|
||||
Bob looks up the private part of his single-use key, :math:`E_B`. He can now
|
||||
compute the root key, :math:`R_0`, and the chain key, :math:`C_{0,0}`, from
|
||||
:math:`I_A`, :math:`E_A`, :math:`I_B`, and :math:`E_B`.
|
||||
|
||||
Bob then advances the chain key :math:`j` times, to compute the chain key used
|
||||
by the message, :math:`C_{0,j}`. He now creates the
|
||||
message key, :math:`M_{0,j}`, and attempts to decrypt the cipher-text,
|
||||
:math:`X_{0,j}`. If the cipher-text's authentication is correct then Bob can
|
||||
discard the private part of his single-use one-time key, :math:`E_B`.
|
||||
|
||||
Bob stores Alice's initial ratchet key, :math:`T_0`, until he wants to
|
||||
send a message.
|
||||
|
||||
Sending messages
|
||||
~~~~~~~~~~~~~~~~
|
||||
|
||||
To send a message the user checks if they have a sender chain key,
|
||||
:math:`C_{i,j}`. Alice use chain keys where :math:`i` is even. Bob uses chain
|
||||
To send a message, the user checks if they have a sender chain key,
|
||||
:math:`C_{i,j}`. Alice uses chain keys where :math:`i` is even. Bob uses chain
|
||||
keys where :math:`i` is odd. If the chain key doesn't exist then a new ratchet
|
||||
key :math:`T_i` is generated and a the chain key, :math:`C_{i,0}`, is computed
|
||||
using :math:`R_{i-1}`, :math:`T_{i-1}` and :math:`T_i`. A message key,
|
||||
key :math:`T_i` is generated and a new root key :math:`R_i` and chain key
|
||||
:math:`C_{i,0}` are computed using :math:`R_{i-1}`, :math:`T_{i-1}` and
|
||||
:math:`T_i`.
|
||||
|
||||
A message key,
|
||||
:math:`M_{i,j}` is computed from the current chain key, :math:`C_{i,j}`, and
|
||||
the chain key is replaced with the next chain key, :math:`C_{i,j+1}`. The
|
||||
plain-text is encrypted with :math:`M_{i,j}`, using an authenticated encryption
|
||||
|
@ -149,12 +166,16 @@ cipher-text, :math:`X_{i,j}`, to the other user.
|
|||
Receiving messages
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The user receives a message with the current chain index, :math:`j`, the
|
||||
ratchet key, :math:`T_i`, and the cipher-text, :math:`X_{i,j}`, from the
|
||||
other user. The user checks if they have a receiver chain with the correct
|
||||
The user receives a message with the sender's current chain index, :math:`j`,
|
||||
the sender's ratchet key, :math:`T_i`, and the cipher-text, :math:`X_{i,j}`.
|
||||
|
||||
The user checks if they have a receiver chain with the correct
|
||||
:math:`i` by comparing the ratchet key, :math:`T_i`. If the chain doesn't exist
|
||||
then they compute a new receiver chain, :math:`C_{i,0}`, using :math:`R_{i-1}`,
|
||||
:math:`T_{i-1}` and :math:`T_i`. If the :math:`j` of the message is less than
|
||||
then they compute a new root key, :math:`R_i`, and a new receiver chain, with
|
||||
chain key :math:`C_{i,0}`, using :math:`R_{i-1}`, :math:`T_{i-1}` and
|
||||
:math:`T_i`.
|
||||
|
||||
If the :math:`j` of the message is less than
|
||||
the current chain index on the receiver then the message may only be decrypted
|
||||
if the receiver has stored a copy of the message key :math:`M_{i,j}`. Otherwise
|
||||
the receiver computes the chain key, :math:`C_{i,j}`. The receiver computes the
|
||||
|
@ -170,6 +191,9 @@ they will create a new chain when they next send a message.
|
|||
The Olm Message Format
|
||||
----------------------
|
||||
|
||||
Olm uses two types of messages. The underlying transport protocol must provide
|
||||
a means for recipients to distinguish between them.
|
||||
|
||||
Normal Messages
|
||||
~~~~~~~~~~~~~~~
|
||||
|
||||
|
@ -207,7 +231,8 @@ Cipher-Text 0x22 String The cipher-text, :math:`X_{i,j}`, of the message
|
|||
=========== ===== ======== ================================================
|
||||
|
||||
The length of the MAC is determined by the authenticated encryption algorithm
|
||||
being used. The MAC protects all of the bytes preceding the MAC.
|
||||
being used. (Olm version 1 uses HMAC-SHA-256, giving a MAC of 32 bytes). The
|
||||
MAC protects all of the bytes preceding the MAC.
|
||||
|
||||
Pre-Key Messages
|
||||
~~~~~~~~~~~~~~~~
|
||||
|
@ -249,17 +274,19 @@ encryption and HMAC-SHA-256_ for authentication. The 256 bit AES key, 256 bit
|
|||
HMAC key, and 128 bit AES IV are derived from the message key using
|
||||
HKDF-SHA-256_ using the default salt and an info of ``"OLM_KEYS"``.
|
||||
|
||||
First the plain-text is encrypted to get the cipher-text, :math:`X_{i,j}`.
|
||||
Then the entire message, both the headers and cipher-text, are HMAC'd and the
|
||||
MAC is appended to the message.
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{align}
|
||||
AES\_KEY_{i,j}\;\parallel\;HMAC\_KEY_{i,j}\;\parallel\;AES\_IV_{i,j}
|
||||
&= HKDF\left(M_{i,j},\,\text{"OLM\_KEYS"}\right) \\
|
||||
&= HKDF\left(0,\,M_{i,j},\text{"OLM\_KEYS"},\,80\right) \\
|
||||
\end{align}
|
||||
|
||||
The plain-text is encrypted with AES-256, using the key :math:`AES\_KEY_{i,j}`
|
||||
and the IV :math:`AES\_IV_{i,j}` to give the cipher-text, :math:`X_{i,j}`.
|
||||
|
||||
Then the entire message (including the Version Byte and all Payload Bytes) are
|
||||
passed through HMAC-SHA-256, and the MAC is appended to the message.
|
||||
|
||||
IPR
|
||||
---
|
||||
|
||||
|
@ -279,6 +306,7 @@ entirely new implementation written by the Matrix.org team.
|
|||
|
||||
.. _`Curve25519`: http://cr.yp.to/ecdh.html
|
||||
.. _`Triple Diffie-Hellman`: https://whispersystems.org/blog/simplifying-otr-deniability/
|
||||
.. _`HMAC-based key derivation function`: https://tools.ietf.org/html/rfc5869
|
||||
.. _`HKDF-SHA-256`: https://tools.ietf.org/html/rfc5869
|
||||
.. _`HMAC-SHA-256`: https://tools.ietf.org/html/rfc2104
|
||||
.. _`SHA-256`: https://tools.ietf.org/html/rfc6234
|
||||
|
|
Loading…
Reference in a new issue