Document the olm protocol.
This commit is contained in:
parent
49c117c62e
commit
531a2fb426
1 changed files with 120 additions and 7 deletions
127
docs/olm.rst
127
docs/olm.rst
|
@ -19,24 +19,137 @@ The setup takes four Curve25519 inputs: Identity keys for Alice and Bob,
|
|||
:math:`E_A` and :math:`E_B`. A shared secret, :math:`S`, is generated using
|
||||
Triple Diffie-Hellman. The initial 256 bit root key, :math:`R_0`, and 256 bit
|
||||
chain key, :math:`C_{0,0}`, are derived from the shared secret using an
|
||||
HMAC-based Key Derivation Function (HKDF).
|
||||
HMAC-based Key Derivation Function (HKDF) with default salt.
|
||||
|
||||
.. math::
|
||||
\begin{align}
|
||||
S&=ECDH\left(I_A,\,E_B\right)\;\parallel\;ECDH\left(E_A,\,I_B\right)\;
|
||||
\parallel\;ECDH\left(E_A,\,E_B\right)\\
|
||||
R_0\;\parallel\;C_{0,0}&=HKDF(S,\,\text{"OLM\_ROOT"})
|
||||
R_0\;\parallel\;C_{0,0}&=HKDF\left(S,\,\text{"OLM\_ROOT"}\right)
|
||||
\end{align}
|
||||
|
||||
Advancing the root key
|
||||
~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Advancing a root key takes the previous root key, :math:`R_{i-1}`, and two
|
||||
Curve25519 inputs: The previous ratchet key, :math:`T_{i-1}`, and the current
|
||||
ratchet key :math:`T_{i}`. The even ratchet keys are generated by Alice.
|
||||
The odd ratchet keys are generated by Bob. A shared secret, `S` is generated
|
||||
using Diffie-Hellman on the ratchet keys. The next root key, :math:`R_o`, and
|
||||
Curve25519 inputs: the previous ratchet key, :math:`T_{i-1}`, and the current
|
||||
ratchet key :math:`T_i`. The even ratchet keys are generated by Alice.
|
||||
The odd ratchet keys are generated by Bob. A shared secret is generated
|
||||
using Diffie-Hellman on the ratchet keys. The next root key, :math:`R_i`, and
|
||||
chain key, :math:`C_{i,0}`, are derived from the shared secret using an
|
||||
HMAC-based Key Derivation Function (HKDF).
|
||||
HMAC-based Key Derivation Function (HKDF) using :math:`R_{i-1}` as the salt.
|
||||
|
||||
.. math::
|
||||
\begin{align}
|
||||
R_i\;\parallel\;C_{i,0}&=HKDF\left(
|
||||
ECDH\left(T_{i-1},\,T_i\right),\,
|
||||
R_{i-1},\,
|
||||
\text{"OLM\_RATCHET"}
|
||||
\right)
|
||||
\end{align}
|
||||
|
||||
|
||||
Advancing the chain key
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Advancing a root key takes the previous chain key, :math:`C_{i,j-i}`. The next
|
||||
chain key, :math:`C_{i,j}`, is the HMAC of ``"\x02"`` using the previous chain
|
||||
key as the key.
|
||||
|
||||
.. math::
|
||||
\begin{align}
|
||||
C_{i,j}&=HMAC\left(C_{i,j-1},\,\text{"\textbackslash x02"}\right)
|
||||
\end{align}
|
||||
|
||||
Creating a message key
|
||||
~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Creating a message key takes the current chain key, :math:`C_{i,j}`. The
|
||||
message key, :math:`M_{i,j}`, is the HMAC of ``"\x01"`` using the current
|
||||
chain key as the key. The message keys where :math:`i` is even are used by
|
||||
Alice to encrypt messages. The message keys where :math:`i` is odd are used
|
||||
by Bob to encrypt messages.
|
||||
|
||||
.. math::
|
||||
\begin{align}
|
||||
M_{i,j}&=HMAC\left(C_{i,j},\,\text{"\textbackslash x01"}\right)
|
||||
\end{align}
|
||||
|
||||
|
||||
The Olm Protocol
|
||||
----------------
|
||||
|
||||
Creating an outbound session
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Bob publishes his identity key, :math:`I_B`, and some single-use one-time
|
||||
keys :math:`E_B`.
|
||||
|
||||
Alice downloads Bob's identity key, :math:`I_B`, and a one-time key,
|
||||
:math:`E_B`. Alice takes her identity key, :math:`I_A`, and generates a new
|
||||
single-use key, :math:`E_A`. Alice computes a root key, :math:`R_0`, and a
|
||||
chain key :math:`C_{0,0}`. Alice generates a new ratchet key :math:`T_0`.
|
||||
|
||||
Sending the first pre-key messages
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Alice computes a message key, :math:`M_{0,j}`, using the current chain key,
|
||||
:math:`C_{0,j}`. Alice replaces the current chain key with :math:`C_{0,j+1}`.
|
||||
Alice encrypts her plain-text with the message key, :math:`M_{0,j}`, using an
|
||||
authenticated encryption scheme to get a cipher-text, :math:`X_{0,j}`. Alice
|
||||
sends her identity key, :math:`I_A`, her single-use key, :math:`E_A`, Bob's
|
||||
single-use key, :math:`E_B`, the current chain index, :math:`j`, her ratchet
|
||||
key, :math:`T_0`, and the cipher-text, :math:`X_{0,j}`, to Bob.
|
||||
|
||||
Alice will continue to send pre-key messages until she receives a message from
|
||||
Bob.
|
||||
|
||||
Creating an inbound session from a pre-key message
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Bob receives a pre-key message with Alice's identity key, :math:`I_A`,
|
||||
Alice's single-use key, :math:`E_A`, the public part of his single-use key,
|
||||
:math:`E_B`, the current chain index, :math:`j`, Alice's ratchet key,
|
||||
:math:`T_0`, and the cipher-text, :math:`X_{0,j}`. Bob looks up the private
|
||||
part of the single-use key, :math:`E_B`. Bob computes the root key :math:`R_0`,
|
||||
and the chain key :math:`C_{0,0}`. Bob then advances the chain key to compute
|
||||
the chain key used by the message, :math:`C_{0,j}`. Bob then creates the
|
||||
message key, :math:`M_{0,j}`, and attempts to decrypt the ciphertext,
|
||||
:math:`X_{0,j}`. If the cipher-text's authentication is correct then Bob can
|
||||
discard private part of his single-use one-time key, :math:`E_B`.
|
||||
|
||||
Sending messages
|
||||
~~~~~~~~~~~~~~~~
|
||||
|
||||
To send a message the user checks if they have a sender chain key,
|
||||
:math:`C_{i,j}`. Alice use chain keys where :math:`i` is even. Bob uses chain
|
||||
keys where :math:`i` is odd. If the chain key doesn't exist then a new ratchet
|
||||
key :math:`T_i` is generated and a the chain key, :math:`C_{i,0}`, is computed
|
||||
using :math:`R_{i-1}`, :math:`T_{i-1}` and :math:`T_i`. A message key,
|
||||
:math:`M_{i,j}` is computed from the current chain key, :math:`C_{i,j}`, and
|
||||
the chain key is replaced with the next chain key, :math:`C_{i,j+1}`. The
|
||||
plain-text is encrypted with :math:`M_{i,j}`, using an authenticated encryption
|
||||
scheme to get a cipher-text, :math:`X_{i,j}`. Then user sends the current
|
||||
chain index, :math:`j`, the ratchet key, :math:`T_i`, and the cipher-text,
|
||||
:math:`X_{i,j}`, to the other user.
|
||||
|
||||
Receiving messages
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The user receives a message with the current chain index, :math:`j`, the
|
||||
ratchet key, :math:`T_i`, and the cipher-text, :math:`X_{i,j}`, from the
|
||||
other user. The user checks if they have a receiver chain with the correct
|
||||
:math:`i` by comparing the ratchet key, :math:`T_i`. If the chain doesn't exist
|
||||
then they compute a new receiver chain, :math:`C_{i,0}`, using :math:`R_{i-1}`,
|
||||
:math:`T_{i-1}` and :math:`T_i`. If the :math:`j` of the message is less than
|
||||
the current chain index on the receiver then the message may only be decrypted
|
||||
if the receiver has stored a copy of the message key :math:`M_{i,j}`. Otherwise
|
||||
the receiver computes the chain key, :math:`C_{i,j}`. The receiver computes the
|
||||
message key, :math:`M_{i,j}`, from the chain key and attempts to decrypt the
|
||||
cipher-text, :math:`X_{i,j}`.
|
||||
|
||||
If the decryption succeeds the reciever updates the chain key for :math:`T_i`
|
||||
with :math:`C_{i,j+1}` and stores the message keys that were skipped in the
|
||||
process so that they can decode out of order messages. If the receiver created
|
||||
a new receiver chain then they discard their current sender chain so that
|
||||
they will create a new chain when they next send a message.
|
||||
|
|
Loading…
Reference in a new issue